
Authors:
Eul-Bum Lee, Changmo Kim, and John T. Harvey

Partnered Pavement Research Program (PPRC) Contract Strategic Plan Element 4.28:

PREPARED FOR:
California Department of Transportation (Caltrans)
Division of Pavement Management

PREPARED BY:
University of California Pavement Research Center
UC Davis and Berkeley
Title: RealCost Enhancement and Version 2 Life-Cycle Cost Analysis Manual for Caltrans

Authors: Eul-Bum Lee, Changmo Kim, and John T. Harvey

Prepared for: Caltrans Division of Pavement Management

FHWA No.: Date Work Submitted: September 21, 2009

Memo Date: September 2009

Strategic Plan Element No: 4.28 Status: Stage 2 review draft

Version No: 1

Abstract:
The work detailed in this technical memorandum concerns customization of the new version of the Federal Highway Administration (FHWA) life-cycle cost analysis (LCCA) software RealCost 2.5, which has enhancements to its functionality and user interfaces, especially in its traffic distribution patterns and cost-estimate procedures for statewide implementation by the California Department of Transportation (Caltrans). The work derives from Task 3.1 (“Traffic Data”) in the work plan of the Partnered Pavement Research Center Strategic Plan Element 4.28. After traffic data from a range of California freeway sections were collected and analyzed, four standard hourly traffic distribution patterns were established as representative ones for the state. Selected interfaces were then developed. In addition, a customized pattern input option was developed to allow users to input a site-specific traffic pattern along with its availability. The California traffic data were collected through the California Freeway Performance Measurement System (PeMS) Web site and analyzed by locations and days (weekdays and weekends). Traffic hourly distributions in California freeway were categorized into four types of distribution patterns (i.e., Weekday Single-Peak, Weekday Double-Peak, Weekend Flat-Peak, and Weekend Skew-Peak). A new traffic pattern selection function has been incorporated into RealCost 2.5, resulting in an interim version, RealCost 2.5CA (California Edition) that can be used for subsequent development tasks. In the next phase of the project, details of the “Alternative” section interface will be enhanced.

Keywords:
Highway reconstruction; Life-cycle Cost Analysis, RealCost

Proposals for implementation:
Continue use of the approach described in this report for planning, designing and executing long-life reconstruction projects. Monitor and document results from at least several more projects with different scenarios to develop database and knowledge that will lead to future cost savings.

Related documents:

Signatures:

C. Kim
1st Author

E. B. Lee
Technical Review

D. Spinner
Editor

Carl Monismith
Principal Investigator

Mario Velado/
T. Joe Holland
Caltrans Manager
DISCLAIMER

The contents of this report reflect the views of the authors who are responsible for the facts and accuracy of the data presented herein. The contents do not necessarily reflect the official views or policies of the State of California or the Federal Highway Administration. This report does not constitute a standard, specification, or regulation.

ACKNOWLEDGMENTS

This study was funded by the California Department of Transportation, which is gratefully acknowledged.
TABLE OF CONTENTS

LIST OF TABLES... iv

LIST OF FIGURES.. iv

List of Abbreviations ... v

1. Introduction ... 1

2. Traffic Data Collection .. 4

2.1 Traffic Data Download from PeMS .. 4

2.2 Traffic Data Analysis .. 6

3.1 Weekday Single-Peak .. 13

3.2 Weekday Double Peak .. 14

3.3 Weekend Flat Peak .. 14

3.4 Weekend Skew Peak ... 15

3.5 Customized A Traffic Pattern .. 16

3.6 Incorporation with Alternative Window .. 17

4. Future Tasks ... 19

4.1 Task 3.2: Alternative Interface .. 19

4.2 Task 3.3: Cost Estimates for Initial Construction ... 20

4.3 Task 3.4: Cost Estimates for Future Maintenance/Rehab ... 20

4.4 Task 3.5: M&R Menu Selection ... 21

4.5 Task 4.1: M&R Sequencing-Automation (Option) ... 21

5. Summary ... 22

6. References ... 23
LIST OF TABLES

Table 2.1: Traffic Data Locations ... 7
Table 2.2: Conversion Factor from Weekday to Weekend ... 8
Table 2.3: Weekend Conversion Factor by Freeway Functionality ... 8

LIST OF FIGURES

Figure 1.1: Flow chart of changes made in Task 3.1, enhancement of Traffic Data. 3
Figure 2.1: Default Traffic Hourly Distribution (Urban) for the Original RealCost 2.5 (FHWA Edition). 5
Figure 2.2: Default Traffic Hourly Distribution (Rural) for the Original RealCost 2.5. (FHWA Edition) 5
Figure 2.3: Relationship for Weekday AADT and Weekend Conversion Factor 8
Figure 3.1: The new Switchboard of RealCost 2.5 California Edition. .. 11
Figure 3.2: The new Traffic Hourly Distribution window of RealCost 2.5CA. .. 12
Figure 3.3: Old traffic hourly distribution of RealCost 2.5 (FHWA Edition). 12
Figure 3.4: The Analysis Options window of RealCost 2.5CA. ... 13
Figure 3.5: The Weekday Single Peak traffic distribution pattern .. 13
Figure 3.6: The Weekday Double Peak traffic distribution pattern .. 14
Figure 3.7: The Weekend Flat Peak traffic distribution pattern ... 15
Figure 3.8: The Weekend Skew Peak traffic distribution pattern .. 15
Figure 3.9: The Traffic Distribution—Customized Pattern input window .. 16
Figure 3.10: The customized pattern generated by using AADT Graph window 17
Figure 3.11: Alternative window ... 18
Figure 4.1: Schedule of the RealCost enhancement for Caltrans ... 19
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AADT</td>
<td>Annual Average Daily Traffic</td>
</tr>
<tr>
<td>CBD</td>
<td>Central Business District</td>
</tr>
<tr>
<td>LCCA</td>
<td>Life Cycle Cost Analysis</td>
</tr>
<tr>
<td>PATH</td>
<td>California Partners for Advanced Transit and Highways</td>
</tr>
<tr>
<td>PeMS</td>
<td>Freeway Performance Measurement System</td>
</tr>
<tr>
<td>UCPRC</td>
<td>University of California Pavement Research Center</td>
</tr>
<tr>
<td>VDS</td>
<td>Vehicle Detector Station</td>
</tr>
<tr>
<td>VOC</td>
<td>Vehicle Operation Cost</td>
</tr>
</tbody>
</table>
1 INTRODUCTION

Life-Cycle Cost Analysis (LCCA) is an analytical technique that uses economic principles in order to evaluate long-term alternative investment options. LCCA accounts for relevant costs to the sponsoring agency, owner, facility operator, and roadway user that will occur throughout the life of an alternative. Relevant costs include initial construction (including project support), future maintenance and rehabilitation, and user costs (time and vehicle costs). The LCCA analytical process helps to identify the lowest cost alternative that accomplishes a project’s objectives by providing critical information for the overall decision-making process.

A California Department of Transportation (Caltrans) memorandum dated March 7, 2007, states that LCCA for pavements shall be performed and documented for all projects that include pavement work on the State Highway System, regardless of funding source, with the exception of the following projects:

- Major Maintenance
- Minor A and Minor B
- Projects using Permit Engineering Evaluation Reports
- Maintenance Pullouts
- Landscaping paving

This new policy applies to projects that have a project approval date of July 1, 2007, or later. Projects with documented approval prior to July 1, 2007, do not need to include life-cycle costs unless a supplemental report is needed due to a change in project scope.

The Caltrans Highway Design Manual (HDM) was updated in June 2006 to incorporate the use of LCCA to determine the optimum pavement design for new construction, widening, and rehabilitation projects (Chapter 610, Topic 612 “Pavement Design Life” and Topic 619 “Life-Cycle Cost Analysis” of the HDM.) Chapters 8, 9, and 10 of the Caltrans Project Development Procedures Manual (PDPM) were also updated to reflect this new policy.

Since publication of the first state LCCA procedures manual in November 2007, Caltrans has chosen RealCost 2.2 (California Edition) as its official LCCA tool to support the application of LCCA in the pavement project-level decision-making process.

The University of California Pavement Research Center (UCPRC) has been working with Caltrans on the development and implementation of the department’s LCCA policy since 2006, and assisted Caltrans with the development and publication of the first state LCCA procedures manual in November 2007.

In March 2009, RealCost 2.5 was released, incorporating many upgrade requests submitted by various transportation agencies. Caltrans subsequently decided to customize the software, with assistance from the University of California Pavement Research Center (UCPRC), into RealCost 2.5CA (California Edition), with the UCPRC from March 2009 to March 2011.

The RealCost enhancement project consists of five definitive tasks and one optional task as shown below (the task numbers originated in the Work Plan: UCPRC-WP-2009-01):

- Task 3.1: Traffic Data
- Task 3.2: Alternative Interface
- Task 3.3: Cost Estimates for Initial Construction
- Task 3.4: Cost Estimates for Future Maintenance/Rehab
- Task 3.5: M&R Menu Selection
- Task 4.1: M&R Sequencing-Automation (Option)

This technical memorandum mainly describes the steps and changes made so far to accomplish Task 3.1 and the plan for the remainder of the work.

Figure 1.1 shows the steps taken to in Task 3.1, the modification of Traffic Data. First, the UCPRC team collected traffic data from PeMS Web site (pems.eecs.berkeley.edu) and analyzed the traffic hourly distribution patterns to determine four standard distribution patterns and one customization function. Second, the team produced the corresponding interfaces of RealCost 2.5 to incorporate the new traffic distribution patterns. Third, the team replaced the user cost calculation module with corresponding ones for the respective alternative activities. With completion of this task, an enhanced interim version of RealCost 2.5CA became available in September 2009. Completion of subsequent tasks will result in further enhancements.
Figure 1.1: Flow chart of changes made in Task 3.1, enhancement of Traffic Data.
2 TRAFFIC DATA COLLECTION

In life-cycle cost analysis, traffic data is required to calculate road user delay cost (road user cost) for each activity of every alternative. Traffic delay is calculated using lane closure parameters such as the number of lanes closed, lane closure duration, work zone length, work zone capacity, and work zone speed limit, and either annual average daily traffic (AADT) with hourly traffic distribution pattern or average hourly volume for both directions.

The AADT on most California highways are updated every year and the hourly traffic volumes are collected and released through the California Freeway Performance Measurement System (PeMS) for the major urban highways.

In the original RealCost 2.5 (FHWA Version), the “traffic hourly distribution” window allows user to input four different traffic hourly distributions and provides one default hourly distribution (1). The traffic hourly distribution input option for four different patterns can only be used when users have the traffic distribution information. When users lack traffic distribution information, the default distribution should be used regardless of the real traffic patterns and weekdays/weekends. The default values are taken from MicroBENCOST, software produced by the Texas Transportation Institute. MicroBENCOST is used to calculate benefits and costs of transportation improvements. The traffic hourly distribution included in MicroBENCOST has been adopted as a default traffic distribution for the original RealCost 2.5 (FHWA). Figure 2.1 and Figure 2.2 show the default traffic hourly distributions for urban and rural highways in the original RealCost 2.5 (FHWA Edition). These distributions are inadequate for California implementation for both weekday and weekend analysis. The traffic patterns in California highways show more diverse types than the MicroBENCOST defaults. This section describes traffic data collection and analysis for establishing California standard traffic patterns for efficient and accurate implementation.

2.1 Traffic Data Download from PeMS

The traffic data for Task 3.1 was acquired from the California Freeway Performance Measurement System (PeMS). As of August 2009, the State of California collects traffic data from 8,622 vehicle detector stations (VDS) with 27,449 loop detectors on 30,573 directional miles of freeways, including California interstate freeways and state routes. The PeMS covers 9 out of 12 districts in California (except Districts 1, 2, and 9). The traffic data are available—with a user name and password—through the PeMS Web site (pems.eecs.berkeley.edu), a cooperative effort of the departments of Electrical Engineering and
Computer Sciences at the University of California at Berkeley, Caltrans, California Partners for Advanced Transit and Highways (PATH), and Berkeley Transportation Systems (2).

Figure 2.1: Default Traffic Hourly Distribution (Urban) for the Original RealCost 2.5 (FHWA Edition).

Figure 2.2: Default Traffic Hourly Distribution (Rural) for the Original RealCost 2.5 (FHWA Edition)
During the period of traffic data collection (February and March 2009), the locations for traffic data download were carefully investigated and selected based on the detectors’ health condition and observation performance. The traffic data includes the averaged traffic hourly volumes for 24 hours of the day during weekday and the same during weekend.

The information (i.e., district, freeway, direction, location, period, and VDS identification number) of the selected locations is listed in Table 2.1.

2.2 Traffic Data Analysis

Traffic data were analyzed to establish standard traffic hourly distribution patterns and investigate traffic patterns for weekdays versus weekends, inbound versus outbound.

Usually, weekday AADT data is collected for most California freeway facilities and weekend AADT data is collected rarely, on an as needed basis. Therefore, when weekend AADT data is needed (and measurement is not feasible) for weekend construction/maintenance analysis, it is commonly derived by conversion from weekday AADT data. In order to accurately accomplish this conversion, a trend analysis of weekday and weekend AADT was conducted to generate a guideline for a conversion factor. For identical locations and periods, weekday and weekend traffic data were compared to investigate the relationship of the traffic patterns for weekdays and weekends. Based on the results of the comparison, the observed weekend AADT was between 70 percent and 105 percent of the weekday AADT (Table 2.2). The weekend conversion factor is calculated as:

$$\text{Weekend AADT Conversion Factor} = \frac{\text{Weekend AADT}}{\text{Weekday AADT}}.$$

The average of the weekend AADT conversion factor from weekday traffic was 0.84.

Figure 2.3 shows that there is no significant relationship for the weekday AADT and the weekend AADT. High conversion factor values are observed in freeways with high AADT and as well those with low AADT. Weekend AADT depends upon freeway functionality more than traffic volume. For example, Interstate 15 in San Bernardino shows higher weekend AADT than weekday AADT because the freeways carries higher portion of weekend leisure travelers.
<table>
<thead>
<tr>
<th>District</th>
<th>Freeway</th>
<th>Direction</th>
<th>Location</th>
<th>Period</th>
<th>VDS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>No PeMS VDS deployed</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>No PeMS VDS deployed</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>NB</td>
<td>Sacramento</td>
<td>Weekday</td>
<td>314923</td>
</tr>
<tr>
<td>5</td>
<td>NB</td>
<td>Sacramento</td>
<td>Weekday</td>
<td>315054</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>NB</td>
<td>Sacramento</td>
<td>Weekend</td>
<td>315054</td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>EB</td>
<td>Placer</td>
<td>Weekday</td>
<td>316214</td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>WB</td>
<td>Placer</td>
<td>Weekday</td>
<td>316222</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>80</td>
<td>EB</td>
<td>Pinole</td>
<td>Weekday</td>
<td>400660</td>
</tr>
<tr>
<td>80</td>
<td>WB</td>
<td>Pinole</td>
<td>Weekday</td>
<td>400301</td>
<td></td>
</tr>
<tr>
<td>880</td>
<td>NB</td>
<td>Oakland</td>
<td>Weekday</td>
<td>400949</td>
<td></td>
</tr>
<tr>
<td>880</td>
<td>SB</td>
<td>Oakland</td>
<td>Weekday</td>
<td>400498</td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>EB</td>
<td>Berkeley</td>
<td>Weekend</td>
<td>400679</td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>WB</td>
<td>Berkeley</td>
<td>Weekend</td>
<td>400809</td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>WB</td>
<td>Pinole</td>
<td>Weekend</td>
<td>400301</td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>EB</td>
<td>Pinole</td>
<td>Weekend</td>
<td>400660</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>17</td>
<td>NB</td>
<td>Scotts Valley</td>
<td>Weekday</td>
<td>500006</td>
</tr>
<tr>
<td>6</td>
<td>41</td>
<td>NB</td>
<td>Fresno</td>
<td>Weekday</td>
<td>600405</td>
</tr>
<tr>
<td>41</td>
<td>NB</td>
<td>Fresno</td>
<td>Weekend</td>
<td>600405</td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>SB</td>
<td>Fresno</td>
<td>Weekday</td>
<td>600281</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>5</td>
<td>NB</td>
<td>Burbank</td>
<td>Weekday</td>
<td>716971</td>
</tr>
<tr>
<td>5</td>
<td>NB</td>
<td>Burbank</td>
<td>Weekend</td>
<td>716971</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>SB</td>
<td>Los Angeles</td>
<td>Weekday</td>
<td>763748</td>
<td></td>
</tr>
<tr>
<td>110</td>
<td>SB</td>
<td>Los Angeles</td>
<td>Weekday</td>
<td>759418</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>15</td>
<td>NB</td>
<td>Ontario</td>
<td>Weekday</td>
<td>811156</td>
</tr>
<tr>
<td>15</td>
<td>NB</td>
<td>San Bernardino</td>
<td>Weekday</td>
<td>811246</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>SB</td>
<td>Ontario</td>
<td>Weekday</td>
<td>811162</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>SB</td>
<td>San Bernardino</td>
<td>Weekday</td>
<td>811232</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>NB</td>
<td>San Bernardino</td>
<td>Weekend</td>
<td>811246</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>SB</td>
<td>San Bernardino</td>
<td>Weekend</td>
<td>811232</td>
<td></td>
</tr>
<tr>
<td>91</td>
<td>EB</td>
<td>Riverside</td>
<td>Weekend</td>
<td>801502</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>WB</td>
<td>Riverside</td>
<td>Weekend</td>
<td>801505</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>No PeMS VDS deployed</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>33</td>
<td>SB</td>
<td>Merced</td>
<td>Weekday</td>
<td>1008510</td>
</tr>
<tr>
<td>33</td>
<td>SB</td>
<td>Merced</td>
<td>Weekday</td>
<td>1008510</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>5</td>
<td>NB</td>
<td>San Diego</td>
<td>Weekday</td>
<td>1118348</td>
</tr>
<tr>
<td>5</td>
<td>NB</td>
<td>San Diego</td>
<td>Weekend</td>
<td>1113976</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>NB</td>
<td>San Diego</td>
<td>Weekday</td>
<td>1113976</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>NB</td>
<td>San Diego</td>
<td>Weekend</td>
<td>1113976</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>57</td>
<td>NB</td>
<td>Fullerton</td>
<td>Weekday</td>
<td>1202365</td>
</tr>
<tr>
<td>57</td>
<td>NB</td>
<td>Fullerton</td>
<td>Weekend</td>
<td>1202365</td>
<td></td>
</tr>
<tr>
<td>57</td>
<td>SB</td>
<td>Fullerton</td>
<td>Weekday</td>
<td>1213106</td>
<td></td>
</tr>
<tr>
<td>57</td>
<td>SB</td>
<td>Fullerton</td>
<td>Weekend</td>
<td>1213106</td>
<td></td>
</tr>
<tr>
<td>405</td>
<td>SB</td>
<td>Irvine</td>
<td>Weekday</td>
<td>1209161</td>
<td></td>
</tr>
<tr>
<td>405</td>
<td>SB</td>
<td>Irvine</td>
<td>Weekend</td>
<td>1209161</td>
<td></td>
</tr>
</tbody>
</table>
Table 2.2: Conversion Factor from Weekday to Weekend

<table>
<thead>
<tr>
<th>District</th>
<th>Location</th>
<th>Freeway</th>
<th>Weekend AADT Conversion Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Sacramento</td>
<td>5</td>
<td>0.72</td>
</tr>
<tr>
<td>4</td>
<td>Pinole</td>
<td>80</td>
<td>0.94</td>
</tr>
<tr>
<td></td>
<td>Pinole</td>
<td>80</td>
<td>0.95</td>
</tr>
<tr>
<td>6</td>
<td>Fresno</td>
<td>41</td>
<td>0.67</td>
</tr>
<tr>
<td></td>
<td>Fresno</td>
<td>41</td>
<td>0.77</td>
</tr>
<tr>
<td>7</td>
<td>Los Angeles</td>
<td>110</td>
<td>0.80</td>
</tr>
<tr>
<td></td>
<td>Burbank</td>
<td>5</td>
<td>0.86</td>
</tr>
<tr>
<td>8</td>
<td>San Bernardino</td>
<td>15</td>
<td>1.02</td>
</tr>
<tr>
<td></td>
<td>San Bernardino</td>
<td>15</td>
<td>0.89</td>
</tr>
<tr>
<td>10</td>
<td>Merced</td>
<td>33</td>
<td>1.04</td>
</tr>
<tr>
<td>11</td>
<td>San Diego</td>
<td>5</td>
<td>0.89</td>
</tr>
<tr>
<td></td>
<td>San Diego</td>
<td>5</td>
<td>0.72</td>
</tr>
<tr>
<td>12</td>
<td>Irvine, Fullerton</td>
<td>405, 57</td>
<td>0.78, 0.78</td>
</tr>
<tr>
<td></td>
<td>Fullerton</td>
<td>57</td>
<td>0.78</td>
</tr>
<tr>
<td></td>
<td>Fullerton</td>
<td>57</td>
<td>0.81</td>
</tr>
<tr>
<td></td>
<td>Average</td>
<td></td>
<td>0.84</td>
</tr>
</tbody>
</table>

Figure 2.3: Relationship for Weekday AADT and Weekend Conversion Factor

Based on the investigation of relationship of weekday AADT and weekend AADT, the weekend AADT conversion factors can be chosen by the respective freeway functionality as shown in Table 2.3.

Table 2.3: Weekend AADT Conversion Factor by Freeway Functionality

<table>
<thead>
<tr>
<th>Freeway Functionality</th>
<th>Weekend AADT Conversion Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shopping, Leisure, and Tours Routes</td>
<td>0.90–1.00</td>
</tr>
<tr>
<td>Rural and Intercity Freeways</td>
<td>0.80–0.90</td>
</tr>
<tr>
<td>Commute Routes and Office Building Areas</td>
<td>0.70–0.85</td>
</tr>
</tbody>
</table>
Among other factors, inbound and outbound traffic hourly distribution patterns are affected by freeway functionality and location. Details are described in the following sections.

The values for vehicle operation cost (VOC) and user time for passenger cars and commercial vehicles in 2009 have not been released as of this writing but they will be updated in subsequent tasks.
3 NEW TRAFFIC HOURLY DISTRIBUTION PATTERNS ADDED IN TASK 3.1

The customized version of *RealCost 2.5CA* contains a pair of key enhancements that allow users to estimate life cycle costs for California projects. Specifically, the customized version of *RealCost 2.5CA* contains traffic hourly distribution patterns specific to California freeways. There are four standard patterns represented: Weekday Single Peak, Weekday Double Peak, Weekend Flat Peak, and Weekend Skew Peak. Traffic data analysis indicates that weekday traffic patterns differ from weekend traffic patterns. The annual average daily traffic volumes (AADT) for weekends are smaller than those for weekdays. In addition, users have the option to further customize this traffic pattern data by inputting site-specific traffic hourly distribution percentages or traffic hourly volumes.

Two dominant patterns are observed in the traffic data for weekdays. The Weekday Single Peak distribution shows a morning-peak period for one direction and an afternoon-peak period for the opposite direction. The Weekday Double Peak pattern shows a morning-peak and an afternoon-peak period for both directions. Two prevailing patterns are also observed in the traffic data for weekends. The Weekend Flat Peak shows a single flat afternoon-peak period; the shape of the Weekend Skew Peak is a single, relatively sharp afternoon-peak period.

The interface of Traffic Data Window was revised for implementing the new California standard traffic patterns. In *RealCost 2.5CA* this window opens (Figure 3.3) when users click the Traffic Hourly Distribution button on the Switchboard.

In configuring their analysis, users can select the user cost computation method by clicking the the Switchboard’s Analysis Option button. In the User Cost Computation section of the window that opens, users can choose between calculated or specified values. When the Calculated option is selected, a road user cost for each activity of each alternative is presented based on the corresponding hourly traffic distribution and lane closure parameters entered in every Alternative window (which is opened by clicking the Alternative button on the Switchboard). If users have a road user cost value for each activity of their respective alternatives, or intend to use specific user cost amounts instead of the calculated values based on the traffic data, then they select Specified in the User Cost Computation Method (Figure 3.4) and type each user cost value in the Alternative window.

As noted earlier, *RealCost 2.5CA* contains standard values for traffic hourly distribution percentages. However, modifications in this version of the software also allow users to provide traffic hourly
proportion and directional split percentages (or traffic hourly volumes for both directions) when they are known. This is accomplished using the new customization function available by clicking the Switchboard’s (Figure 3.1) Traffic Hourly Distribution button, and the Input Traffic button next to the Customized input pattern (Figure 3.2).

Note: Users distinguish the *RealCost V2.5* California Edition by the title of the switchboard. The title bar shows “California Edition” and the right upper side of the switchboard shows “Build: 2.5.0 (CA)” (Figure 3.1).

The original *RealCost 2.5* (FHWA edition) has four default values of traffic hourly distribution patterns (Weekday 1, Weekday 2, Weekend 1, and Weekend 2) for each urban and rural highway. The default values can be changed by users when the specific distribution data is available (Figure 3.3).

The details for each traffic distribution pattern are described in the following sections.

![Figure 3.1: The new Switchboard of *RealCost 2.5* California Edition.](image)
Figure 3.2: The new Traffic Hourly Distribution window of RealCost 2.5CA.

Figure 3.3: Old traffic hourly distribution of RealCost 2.5 (FHWA Edition).
3.1 Weekday Single-Peak

The Weekday Single Peak pattern contains one peak period for each direction. A morning-peak appears in one direction, and an afternoon-peak appears in the other (Figure 3.5). The morning peak starts at 5:00 hrs (5 A.M.), reaches its maximum between 7:00 and 8:00 hrs (7 and 8 A.M.), and begins to diminish at 10:00 hrs (10 A.M.). The afternoon peak starts around at 15:00 hrs (3:00 P.M.), reaches its maximum between 17:00 and 18:00 hrs (5:00 and 6:00 P.M.), and diminishes at 20:00 hrs (8:00 P.M.). This pattern is often observed in the boundary areas of central business districts (CBDs) or perimeters of downtown areas.
3.2 Weekday Double Peak

The Weekday Double Peak pattern contains two peak periods for both directions. The first peak appears and diminishes in the morning for both directions, and the second peak appears and diminishes in the afternoon for both directions. The morning-peak starts at 5:00 hrs (5 A.M.), reaches its maximum between 7:00 and 8:00 hrs (7 and 8 A.M.), and begins diminishing at 10:00 hrs (10 A.M.). The afternoon-peak starts around at 15:00 hrs (3:00 P.M.), reaches its maximum between 5:00 and 6:00 hrs (5 and 6 P.M.), and ends at 8:00 P.M. (Figure 3.6). This pattern is often observed on urban freeways inside CBDs or downtown areas during weekdays.

![Figure 3.6](image)

Figure 3.6: The Weekday Double Peak traffic distribution pattern.

3.3 Weekend Flat Peak

The Weekend Flat Peak pattern contains one flat peak period for each direction. The flat peak starts at 10:00 hrs (10 A.M.) and diminishes around at 20:00 hrs (8 P.M.). The curve shape is gentle and flat during the peak period (Figure 3.7). This pattern is mostly observed on urban freeways inside CBDs or downtown areas during Saturdays and Sundays.
3.4 Weekend Skew Peak

The Weekend Skew Peak pattern contains one sharp peak period for each direction. The skew peak starts at 14:00 hrs (2 P.M.) and diminishes around at 20:00 hrs (8 P.M.). The curve shape is skewed and narrow during peak period (Figure 3.8). This pattern is particularly observed on freeways connecting leisure sites, including amusement parks and tourist destinations.
3.5 Customized A Traffic Pattern

In addition to the four California standard traffic hourly distribution patterns, the customization function allows users to input a site-specific traffic hourly distribution pattern by selecting the customized Input Traffic button in the Traffic Hourly Distribution window (Figure 3.2). In the Traffic Hourly Distribution—Customized Pattern window that appears (Figure 3.9), users directly input either hourly proportions and directional split proportions or hourly volumes for inbound and outbound. By clicking the relevant View Graph button after inputting either traffic pattern by AADT or hourly traffic volumes, users can obtain a corresponding graph of the customized traffic patterns (Figure 3.10), which can then be selected for each activity of the respective alternative.

![Traffic Hourly Distribution - Customized Pattern](image)

Figure 3.9: The Traffic Distribution—Customized Pattern input window.
3.6 Incorporation with Alternative Window

The new traffic hourly distribution patterns with the customization function are incorporated in the Alternative window, which is accessed by clicking the Alternative button in the Switchboard. When users click the Traffic Hourly Distribution menu-drop button in the Alternative window, five choices of traffic patterns appear (Figure 3.11). When one traffic hourly distribution pattern among the five is chosen, the tool calculates the user cost with the other given traffic condition (i.e., Work Zone Duration, Work Zone Speed Limit, and Closure Hours) for the corresponding activity of the respective alternative.

Figure 3.10: The customized pattern generated by using AADT Graph window.
Figure 3.11: Alternative window.
4 FUTURE TASKS

The RealCost enhancement for Caltrans began in March 2009 and will be completed in March 2011. Figure 4.1 shows the detailed schedule for the tasks, including optional Task 4.1.

Task 3.1 (Traffic Data) was completed in September 2009, and Task 3.2 (Alternative Interface), which began in July 2009, is expected to be completed by December 2009. Task 3.3 (Cost Estimates for Initial Construction) began in September 2009 and will be continued until March 2010 with Task 3.4 (Cost Estimates for Future Maintenance/Rehab) concurrently. Task 3.5 (M&R Menu Selection) is planned to begin in March 2010 and will be completed by September 2010. Task 4.1 (M&R Sequencing-Automation) is an optional task and will be conducted from October 2010 to March 2011 after additional approval.

The details and deliverables for each task are described in the following sections.

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Task 3.1. Traffic Data</td>
<td>Completed</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Task 3.2. Alternatives Interfaces</td>
<td>Planned</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Task 3.3: Cost Estimates for Initial Construction</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Task 3.4: Cost Estimates for Future Maintenance/Rehab</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Task 3.5: M&R Menu Selection</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Task 4.1 (Option): M&R Sequencing Automation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Planned in Option</td>
<td></td>
</tr>
</tbody>
</table>

Figure 4.1: Schedule of the RealCost enhancement for Caltrans.

4.1 Task 3.2: Alternative Interface

1. Develop a procedure to incorporate new hourly traffic distribution patterns from the Traffic Data input window, and improve the interfaces for activation and interaction in the Alternative window (The current version has preset traffic types (2 weekend and 2 weekday, and they are properly working when the hourly traffic distribution pattern is changed).

2. Add/change the first activity title to Activity 1 (Initial Construction).
3. Insert a calculator button and develop the code to link it to the Cost Module.
4. Insert a button and develop the code to link the Cost Estimate to the each Activity tab in Alternative Window.
5. Provide integration interface between RealCost and the Cost Estimate module.
6. Provide more automatic calculation procedures of the working-day estimate input for future M&R activities with preset design cross sections, based on typical CA4PRS production rates.
7. The main tasks of Alternatives will be completed and a technical memorandum will be submitted by November 30, 2009.

4.2 Task 3.3: Cost Estimates for Initial Construction

1. Produce a prototype of cost from CA4PRS based on the latest Appendix AA of the Caltrans Project Development Procedures Manual (PDPM) to be used in the “Initial Construction Estimate.”
2. Insert percentage calculation when total dollar amount is entered.
3. Develop the code to input the construction duration calculated from CA4PRS and link the Cost Estimate module to the Construction Schedule Analysis module.
4. Produce calculation of user inputs.
5. Delete Net Project Value (NPV) in main window of Cost Estimate module.
6. Simplify calculation of supporting cost by PY.
7. Insert a user input window including lane-mile and unit cost.
8. Include a simplified function to determine traffic handling cost
9. Determine a process to input Road User Cost (RUC) from the two different ways (calculated and specified).
10. Decide on a process and develop the code to incorporate RUC into RealCost.
11. The main tasks of Cost Estimates for Initial Construction will be completed and its technical memorandum will be submitted by March 31, 2010.

4.3 Task 3.4: Cost Estimates for Future Maintenance/Rehab

1. Investigate typical rehabilitation thickness (including CAPM) provided by Caltrans’ Division of Pavement Management to develop user inputs that will generate cost estimates for future activities.
2. Produce a function and develop the code to calculate total volume and select a number of closures automatically in the Future Maintenance/Rehab Activities.
3. Provide the factors in cost estimates for Future Maintenance/Rehab Activities.
4. The main tasks of Cost Estimates for Future Maintenance/Rehab will be completed and its technical memorandum will be submitted by March 31, 2010.

4.4 Task 3.5: M&R Menu Selection

1. Coordinate and update the Maintenance and Rehab (M&R) sequence with Caltrans’ Division of Pavement Management.
2. Produce a tracking function of classification.
 A. Climate region
 B. Final surface
 C. Design life
 D. Maintenance level
3. Confirm the latest M&R sequencing with Division of Pavement Management, update the M&R sequencing, covert the M&R data to an Excel DB with a unique M&R ID code for tracking from RealCost 2.5CA with automatic interaction (this automation is optional Task 4.1).
4. Enhance accuracy of pavement maintenance and rehabilitation sequences included in the manual by investigating service lives of historical maintenance and rehabilitation strategies.
5. The intermediate progress summary of M&R Menu Selection will be submitted by May 31, 2010.
6. The main tasks of M&R Menu Selection will be completed and a technical report on RealCost and M&R Updates will be submitted by September 15, 2010.

4.5 Task 4.1: M&R Sequencing-Automation (Option)

1. Activate a function linking M&R data to the Activity menu in the Alternatives section of the Switchboard.
2. Produce a function to calculate activity service life, maintenance frequency, and agency maintenance cost in each activity of each alternative.
3. Develop a sequencing-automation function to place activity service life, maintenance frequency, and agency maintenance cost in each activity chosen when the number of activities is chosen.
4. Test the updated RealCost including M&R sequencing-automation function.
5. An intermediate progress summary will be submitted by December 15, 2010.
6. The main tasks of M&R Sequencing-Automation will be completed and its technical memorandum will submitted by March 15, 2011.
5 SUMMARY

This technical memorandum summarizes Task 3.1: Traffic Data of the RealCost Enhancement and Version 2 Life-Cycle Cost Analysis Manual for Caltrans. Every task item in Task 3.1 has been consequently completed and the interim version of RealCost 2.5CA (California Edition) is available and ready for subsequent tasks. The major change accomplished in Task 3.1 was the addition of California-specific traffic patterns and input data selection.

First, four standard California-specific traffic hourly distribution patterns were generated using traffic data collected and analyzed from a number of state freeway sections. The traffic distribution patterns were categorized into four standard patterns—Weekday Single-Peak, Weekday Double-Peak, Weekend Flat-Peak, and Weekend Skew-Peak—regardless of freeway category (Urban/Rural).

Based on the comparison of AADT, no strong relationship was found between weekday AADT and weekend AADT, even. The weekend conversion factors were observed between 0.70 and 1.04, and their average was 0.84. Based on the comparative analysis of weekday and weekend AADT, weekend AADT conversion factors by freeway functionality were provided.

Second, the new traffic pattern selection option was incorporated into the RealCost 2.5. The interim RealCost 2.5CA contains the new interfaces for the traffic hourly distribution input and Alternative window. The corresponding modules for the traffic hourly distribution selection and calculation of user costs were replaced in the interim RealCost 2.5CA.

Third, the customization function for the user-specific input was generated and the interface windows were produced and incorporated with the relevant modules. When either hourly proportion of AADT or traffic hourly volume is known for a freeway section, a user can select the customization option to input directly the site-specific hourly traffic data instead of choosing one of the four standard traffic distribution patterns.

Fourth, the traffic pattern data input interfaces in the original FHWA’s RealCost V2.5 were modified and upgraded to customize the new traffic data pattern selection for Caltrans, especially in the Alternative and Activity menus.

The interfaces for the traffic, user cost, and cost estimates for each activity of the respective alternative in the Alternative window will be updated in subsequent project tasks.
6 REFERENCES

2. PATH at University of California, Berkeley and Caltrans (2009), California Freeway Performance Measurement System (PeMS), pems.eecs.berkeley.edu. (Accessed August 2009.)