Asphalt Pavement Life Cycle Assessment: Review and Future Outlook

John Harvey

University of California Pavement Research Center

City and County Pavement Improvement Center

Development Strategy of Road Engineering Harbin Institute of Technology Harbin, China 5 May 2018

Center

UNIVERSITY OF CALIFORNIA Davis - Berkeley

Outline

- Review of sustainability goals
- Changes in transportation that will affect pavement
- Tools for measuring sustainability
- Implementation
- Prioritization
- Conclusions

Sustainability:

Master equation for environmental impacts

Environmental impact =

Climate Change: California targets for GHG

- State Law signed in 2006, economic recession 2008-2015
- State law remains; federal withdrawal from Paris Agreement
- 2020 targets: will be met, primarily in energy sector
- 2030, 2050 targets: much harder, requires many more strategies

Air Resources Board Climate Scoping Plan

Climate Change: can California state goals be met and keep a strong economy?

How could changes in pavements reduce California GHG emissions?

- Out of 459 MMT CO2e in 2013
 - On road vehicles 155 MMT
 - Reduce rolling resistance to optimum = - 1.5 MMT
 - Reduce hauling of stone 10%
 = 0.6 MMT
 - Refineries 29 MMT
 - Reduce asphalt use 50%
 = 0.7 MMT
 - Cement plants 7 MMT
 - Reduce cement use 50%
 = 0.2 MMT
- Total pavement reductions
 = 2.9 MMT
 - = 0.6% of state total GHG

- These are important contributions to GHG reduction
- Equally important is what changes in other parts of economy will do to pavement

Pavement Materials Resource Depletion and Replacement

- Aggregate:
 - Local future shortages and quality issues
 - Large quantities of aggregate moved on the roads,
 = lots of fuel use, high levels of damage on roads
- Asphalt:
 - US: supply and demand balanced, because large amounts of asphalt are coked for liquid fuels
 - If oil demand for transportation fuel diminishes, there is a nearly infinite future supply of asphalt

– Will there be a business model to refine oil for asphalt?

Air Pollution Toxicity is also very important

- Transportation related factor of most importance is air pollution, especially diesel trucks
- Requiring changes in vehicle energy sources, especially trucks

✓ Less oil refining

http://graphics.latimes.c om/responsivemappollution-burdens/

https://www.uschamber.com /issue-brief/ozone-nationalambient-air-quality-standards

Truck traffic axle weights increasing?

- State-wide average axle loads (115 WIM stations) virtually unchanged in 10 years
- Gross vehicle weights slightly reduced

Freight growth: more trucks

- 62% increase in truck counts vs 14% growth in population
- Short-haul:
 69% increase
- Long-haul: 59% increase

Electric vehicles and weight

- Eurrently about 30% heavier for about 30% of the range
- Trucks use same technologies as cars, more range
 = add more batteries
- Fuel cells questionable

http://www.cleancaroptions.com/ html/ev_weight.html DeMorro, 2015, https://cleantechnica.com/2015/0 3/17/lighter-batteries-may-provetipping-point-electric-vehicles/

Long and short haul trucks available now

WAZE. OUTSMARTING TRAFFIC, TOGETHER.

What is wrong with this image if trucks use Waze and you are a local government?

Autonomous Vehicle Technology

- Fully automated truck platooning expected to deploy starting 2020 and broad implementation by 2030
 - 3 to 13% fuel savings
- Asphalt surfaced pavement
 - Channelized traffic if wander is not programmed into guidance,
 = faster rutting and fatigue
 - Truck platooning will reduce thixotropic recovery times at high speeds, larger strains
- Automated Vehicles Symposium 2017 and 2018
 - No discussion of effects on pavement

5 ways driverless cars will change our roads and highways

Our entire transportation infrastructure needs to move away from a design focus on human drivers BY BARBAR BLABEDGE | DEARBARAELDEEDCE | SEP 6.2016.9.24AM EDT

TWEET & SHARE O PIN

What kind of pavement will we need in the future?

Millennials driving the trend; may not just be recession

Less interested in cars; use of technology to connect instead of travel; more interested in walkable, bikeable cities; fewer or more vehicles

NCST white paper, Feb 2016, What affects US passenger travel? Current trends and future perspectives; US PIRG, Oct 2014, Millennials in Motion

Summary of Sustainability Goals

- Respond to changes in vehicle technology
- Save the planet from excessive global warming
 - Reduce greenhouse gas emissions from pavement and interactions of pavement with other systems
- Reduce local emissions harming people
 - Air pollution, water pollution, etc
- Do not use finite resources too quickly
- Maintain economic competitiveness
- Improve pavement effects on human quality of life
- Achieve equity to all people in access to opportunities provided by pavement
 - Access to education, health care, jobs, recreation

Tools for Measuring Sustainability

- Life Cycle Cost Analysis (LCCA)
 Economic
- Life Cycle Assessment (LCA)
 - Range of environmental impacts, quantitative
- Social Life Cycle Assessment (S-LCA)
 - Indicators for social outcomes and equity

Reasons to Measure

Decision support Establish baselines for process improvement Reporting for public, industry and government

Life Cycle Cost Analysis (LCCA)

- Need for both pavement and interactions of pavement with users:
 - Performance models
 - Cost data: direct costs and social costs

\$ (Agency
Costs)
\$ (User
Costs)

Four Key Stages of Life Cycle Assessment

Figure based on ISO 14040, adopted from Kendall

Inventories of flows needed for all life cycle stages

US EPA Impact Assessment Categories

(TRACI – Tool for the Reduction and Assessment of Chemical and other environmental Impacts)

From Saboori Image sources: Google

Pavement Life Cycle Stages data and performance models needed for each stage

ISO Standards and FHWA Pavement LCA Framework Document

- Search "FHWA pavement LCA framework"
- International Standards Organization (ISO) standards for LCA are generic for all materials
- FHWA guidance specific to pavements published in 2016

Social-LCA for transportation

- Indicators and models being developed
- All indicators being reviewed for equity of transportation investment between poor and rich neighborhoods

Selected S-LCA Indicator Category	Selected performance measures
Jobs	Access to Jobs
Accessibility/ Equity	 Job Creation Access to Community Destinations Access to School
Mobility/ connectivity	 Average Travel Time Average Trip Length Connectivity Index Bike/Pedestrian Delay
Safety/ public health	 Level of Service (bicycle and pedestrian) Crashes Physical Activity and Health
Livability	Green Land Consumption Street Trees

Pavements = urban hardscape not just roads and streets

W Madison St

W Monroe S

WiMonroe S

W Madison

- Tire pavement noise
- Human thermal comfort
- Pedestrian and bicycle functionality
- Better interaction with urban forestry

Where can LCA and LCCA be implemented now?

- Pavement management system optimization
 - Condition trigger levels for treatment (timing)
 - Treatment selection
- Pavement planning and design
- Policy evaluation
 - Funding planning for maintenance, rehabilitation
 - Materials changes
 - Construction quality specifications
 - Design methods

Implementation Fundamentals

- Implementation of new technology has not occurred until it is used in every day standard practice
- To achieve implementation requires about:
 - \$1 of research
 - \$ 3 of development
 - \$ 6 of support for implementation
 - Tools
 - Piloting
 - Training
 - Support
- All of these are required

Steps in development of pavement LCA, LCCA and S-LCA tools?

- Where are we now for LCCA and LCA?
 - Framework ready
 - Data definitions and models ready
 - Need: better data, more tool development
- Where are we now for S-LCA?
 - Just beginning

FRAMEWORK ENVIRONMENT

PMS, LCCA, LCA all need some common data

Caltrans Pavement Engineering and Database/Software Interactions

Ver:01SEP2016

eLCAP and PaveM Functionality and Data Sources

How to get better regional data for materials: Environmental Product Declaration (EPD)

Environmental Facts

Functional unit: 1 metric ton of asphalt concrete

Primary Energy Demand [м」]	4.0x10 ³
Non-renewable [мл]	3.9x10 ³
Renewable [мJ]	3.5x10 ²
Global Warming Potential [kg CO ₂ -eq]	79
Acidification Potential [kg SO ₂ -eq]	0.23
Eutrophication Potential [kg N-eq]	0.012
Ozone Depletion Potential [kg CFC-11-eq]	7.3x10 ⁻⁹
Smog Potential [kg O3-eq]	4.4
Boundaries: Cradle-to-Gate Company: XYZ Asphalt RAP: 10%	

Example LCA results

Adapted from Pavement Interactive

Recommended 3 Stage Approach for Implementing EPD Requirements

- 1. Develop rules and then require reporting, move towards standardization of EPDs (1-2 years)
 - Caltrans will begin requiring EPDs for pavement materials in 2018
- 2. Develop standardization, rigor, review process, level playing field, appropriate applications (3 to 5 years)
 - Most of Europe has standardized EPD requirements
- 3. If desirable and have made sufficient progress, consider using for procurement
 - Defining principle: Must take into account equivalent performance
 - Netherlands, France, Sweden are using for selecting contractors

PMB manufacture causes about 60% more air emissions than straight bitumen in Europe; True in US? Can modified asphalt show more than 60% increase in life?

Eurobitume LCI Bernard et al. Nantes LCA 2012
Caltrans Network: Optimal IRI to trigger treatment for GHG by traffic group

Daily equivalent vehicles of lane- segments range	Total lane- miles	Percentile of lane-mile	Optimal IRI triggering value m/km, (inch/mile)	Annual CO ₂ -e reductions (MMT)	Modified total cost- effectiveness (\$/tCO ₂ -e)
<2,517	12,068	<25		0	N/A
2,517 to 11,704	12,068	25-50	2.8 (177)	0.141	1,169
11,704 to 19,108	4,827	50-60	2.0 (127)	0.096	857
19,108 to 33,908	4,827	60-70	2.0 (127)	0.128	503
33,908 to 64,656	4,827	70-80	1.6 (101)	0.264	516
64,656 to 95,184	4,827	80-90	1.6 (101)	0.297	259
>95,184	4,827	90-100	1.6 (101)	0.45	104
			TOTAL:	1.38	416

Wang et al 2014

Deflection Bowl -MIT 40 (microns) MSU 30 --- OSU 20 Structure ction 10 Defle -1 0 1 2 Distance (m) Hourly Traffic Distribution WIM **Energy Deflection Modeling Results** 1200 + Group 1 + Group 2s - 4- Group 2s - + Group 3 1000 800 Cars wd 600 _____SUV wd 400 Truck well suv Truck Car SUV 1 3 5 7 9 11 13 15 17 19 21 23 30 C 45 C Time of Day Linear Regression Model for Axle load spectra and Hourly Speed Distribution Interpolation speeds 140 for 24 hours for weekdays and weekend Car/SUN we 60 Track and 1 3 5 7 9 11 13 15 17 19 21 23 Time of Day For each hour, take loads, speeds, **Temperature Profile** and temperature and compute excess fuel consumption Loop over every hour $E_t[efc] = \sum^{N \ loads} efc(L_tS_tT_t)P(L_tS_t) \times No. of \ axles$ For weekdays and weekends - 11-404N Figure 3: Durtime Temperature ('C) vs. Depth (mm) Annual Excess Fuel Consumption $E_t[efc] \frac{1}{v}$ E[efc] =Surface Temperature

Annual Excess Fuel Consumption from Asphalt Viscoelastic Response Simulation flowchart

Structural Response Simulation Results by factorial traffic/climate (avg ml/km/veh EFC)

Roughness (R) and Macrotexture (M) Simulation Results by Section Specific Data relative to 0.6 m/km and 0.5 mm (avg ml/km/veh EFC)

The Forgotten 80% of Our Pavements

County LCCA and LCA example: 8% vs 12% air-voids

- Assumptions:
 - Rural pulverize HMA, compact, 4 in. HMA
 - \$31/m²
 - 12% air-voids = 12 year life

- 8% air-voids = 18 year life

- Net present cost* per In-mi over 50 year period:
 - -12% air-voids = \$2.6 million
 - 8% air-voids = \$1.9 million = 29 % less cost
- Greenhouse gas emissions are 34% less

*2% discount rate

Effects on greenhouse gas emissions of concrete specifications for concrete cement & SCM content

• Mix designs from a city that hasn't reviewed specifications and Caltrans heavy duty highway

To reduce greenhouse gases California passed a law to make pavements more reflective, was it the right thing to do? LCA can be used to check policy

Difference in greenhouse gases for:

asphalt inlay vs thin concrete, slurry vs reflective coatings

1A = slurry seal \rightarrow reflective coating; 2A, 2B, 2C = mill-and-fill AC \rightarrow no-, low-, or high-SCM BCOA

So what can be done to make pavements more sustainable?

- FHWA Sustainable Pavements Task Group
 - More sustainable pavement reference document (2015)
 - Covers everything about pavement and sustainability
 - Tech briefs and webinars

http://www.fhwa.dot.gov/pavement/ sustainability/ref_doc.cfm

路面可持续发展参考指南

<u>http://www.gowisdom.org/images/可持续铺面研究-V1206.pdf</u>

How to prioritize what to do?

Bang for your buck metric: \$/ton CO₂e vs CO₂e reduction

Adapted from Lutsey, N (2008) Institute of Transportation Studies, University of California, Davis, Research Report UCD-ITS-RR-08-15

New Caltrans project beginning in 2018

- Calculation of Benefit/Cost for Alternative Strategies to Reduce GHG
 - Evaluate <u>all</u> potential strategies that Caltrans could undertake to improve sustainability, for example
 - Planning
 - Pavement and bridges
 - Equipment
 - Traffic operations
 - Land use for solar, other energy generation
 - Primary focus on greenhouse gases, but also on important local issues: air pollution

All new Caltrans pavement initiatives required to have LCA and LCCA

- Asphalt rubber
 - All Caltrans surfaces must be rubberized, top 60 mm
 - Next: deeper use of gap-graded rubber mixes
- Thin bonded concrete overlay on asphalt
 - 100 to 175 mm concrete overlays bonded to existing asphalt
- PG+X
 - All binders used in dense-graded hot mix to have 5 to 10 percent tire rubber
- High RAP mix
 - 16 to 40 %
 - Interaction with warm mix asphalt

Conclusions

- We must deliver more in terms of sustainability:
 - Cost, safety, smoothness, construction delay, small environmental impacts, local pollution
 - Asphalt paving: compaction,, recycling as long as equal or better performance, smoothness
- Deliver innovation that can be used
 - \$9 on development, implementation for each \$1 of research
- Be using LCA and LCCA now!
 - Optimize pavement management system decision trees
 - Evaluate <u>all</u> new materials and pavement structures as part of research & development process before implementation
 - Evaluate changes in policy, specifications
 - Review and respond to new and automated vehicles

Conclusions

- Put LCA, LCCA and later Social LCA tools into standard practice; next 5 years
 - Finish filling data and model gaps
 - Require EPDs
 - Deliver first generation tools
- Require training in LCA and LCCA for all undergraduate pavement students, starting now
 - Practice as part of their materials design classes
- Train all practicing engineers, pavement mangers, decision makers in LCA and LCCA, starting now
- Educate policy-makers on basics of LCA and LCCA and prioritization of policy using them, starting now

www.ucprc. ucdavis.edu

LCA Team: Ali Butt Arash Saboori Jon Lea Jeremy Lea Changmo Kim Hui Li Maryam Ostovar

Thanks to Caltrans and other sponsors

