Pavement Macrotecture and Its Effect on Bicycle Ride Quality

Hui Li, PhD, PE, UCPRC
John Harvey, PhD, PE, UCPRC
T. Joe Holland, PhD, PE, Caltrans Research
Steve Price, PE, Caltrans District 5 Maintenance
Kelly McClain, PE, Caltrans District 5 Maintenance

Jan 12th, 2015
Outline

- Project Background & Pavement Texture
- Macrotexture Measurement
- Bicycle Vibration Measurement
- Survey of Bicycle Ride Quality (Phase I)
- Remedial Treatment on SLO-1
- Additional Survey (Phase II)
- Remarks
Biking on Coastal Highway 1, California
2012, Chip Seal, 40 km ($2.1 million)
Help Us Fix Highway 1
Pavement Surface Texture Components and Wavelengths

- **Roughness (unevenness)**: Wavelength > 500mm
- **Megatexture**: 50mm < Wavelength < 500mm
- **Macrotecture**: 0.5mm < Wavelength < 50mm
- **Microtexture**: Wavelength < 0.5mm

- Short Stretch of Road
- Tire
- Tire/road Contact Patch
- Single Aggregate
Influence of Pavement Surface Texture on Motorized Vehicles
Outline

- Project Background & Pavement Texture
- Macrotexture Measurement
- Bicycle Vibration Measurement
- Survey of Bicycle Ride Quality (Phase I)
- Remedial Treatment on SLO-1
- Additional Survey (Phase II)
- Remarks
Macrotexture Measurement Method

Laser Texture Scanner (LTS)
Spot measurement with need for traffic closure

Mean Profile Depth (MPD)
Unit: mm or in

Inertial Profiler (IP)
Continuous linear measurement without need for traffic closure
Example 3D Macrotexture Images and MPD from LTS

Microsurfacing, MPD = 1.1 mm

Coarser 9.5mm chip seal, MPD = 2.3 mm
Example MPD on SLO 1
Continuous Measurement with IP
MPD from LTS
for Different Roads and Sections
MPD Measured from IP for Different Phase I Sections

- SLO-1 Additional Rolling
- SLO-1
- Mono-395
- Mon-198
- SLO-227
- SLO-41

MPD (mm)

- Green: Both
- Red: Outside ETW
- Blue: Inside ETW

[Diagram showing MPD measurements for different sections]
Correlation of Macrotecture Measurements with IP and LTS

\[y = 0.97x \]

\[R^2 = 0.93 \]

![Graph showing correlation between MPD_IP and MPD_LTS with a linear trend line and R^2 value of 0.93.](image)
Survey Section #

1, 6 = 5/16 in PME Seal Coat
2, 5 = Modified Binder Seal Coat - Modified gradation
3, 4 = Modified Binder Seal Coat - Utilizing steel roller
7, 16 = Cinder Seal
8, 15 = Microsurfacing
9, 14 = 1/4 in PME Seal Coat - 2nd application of a double chip seal
10, 13 = Sand Seal
11, 12 = Slurry Seal
17, 18 = Old HMA Overlay on Mon-198
19, 20 = New Chip Seal on Mon-198 (Control)
21-23 = New Chip Seal on SLO-1 (Control)

LTS Measurement

Remedial treatment test sections Mon 198

Specification test sections Mon 198

Sand Seal

Chip Seal

SLO 1
Outline

- Project Background & Pavement Texture
- Macrotecture Measurement
- Bicycle Vibration Measurement
- Survey of Bicycle Ride Quality (Phase I)
- Remedial Treatment on SLO-1
- Additional Survey (Phase II)
- Remarks
Bicycle Vibration Measurement

Accelerometers (solid red circles)
GPS unit (dotted blue circle)
<table>
<thead>
<tr>
<th>Survey Section #</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1, 6</td>
<td>5/16 in PME Seal Coat</td>
</tr>
<tr>
<td>2, 5</td>
<td>Modified Binder Seal Coat - Modified gradation</td>
</tr>
<tr>
<td>3, 4</td>
<td>Modified Binder Seal Coat - Utilizing steel roller</td>
</tr>
<tr>
<td>7, 16</td>
<td>Cinder Seal</td>
</tr>
<tr>
<td>8, 15</td>
<td>Microsurfacing</td>
</tr>
<tr>
<td>9, 14</td>
<td>1/4 in PME Seal Coat - 2nd application of a double chip seal</td>
</tr>
<tr>
<td>10, 13</td>
<td>Sand Seal</td>
</tr>
<tr>
<td>11, 12</td>
<td>Slurry Seal</td>
</tr>
<tr>
<td>17, 18</td>
<td>Old HMA Overlay on Mon-198</td>
</tr>
<tr>
<td>19, 20</td>
<td>New Chip Seal on Mon-198 (Control)</td>
</tr>
<tr>
<td>21-23</td>
<td>New Chip Seal on SLO-1 (Control)</td>
</tr>
</tbody>
</table>

Specification test sections Mon 198

Remedial treatment test sections Mon 198
Outline

- Project Background & Pavement Texture
- Macrotecture Measurement
- Bicycle Vibration Measurement
- Survey of Bicycle Ride Quality (Phase I)
- Remedial Treatment on SLO-1
- Additional Survey (Phase II)
- Remarks
Sections in Phase I Survey

Mon-198

SLO-1
Survey Briefing (Mon-198)
Bicyclist Survey

- Acceptability (0 = Unacceptable; 1 = Acceptable): average rate of all riders or percentage of riders rating pavements as “Acceptable”
- Ride Quality: 1 to 5, with 1 = Poor and 5 = Excellent

Other background information with potential explanatory power

<table>
<thead>
<tr>
<th>Group</th>
<th>No. of Sections</th>
<th>No. of Riders</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mon-198</td>
<td>16</td>
<td>24</td>
</tr>
<tr>
<td>SLO-1</td>
<td>3</td>
<td>11</td>
</tr>
</tbody>
</table>
Outline

- Project Background & Pavement Texture
- Macrotecture Measurement
- Bicycle Vibration Measurement
- Survey of Bicycle Ride Quality (Phase I)
- Remedial Treatment on SLO-1
- Additional Survey (Phase II)
- Remarks
Remedial Sand Seal on SLO-1

2013, Sand Seal, 40 km ($1.5 million)
Remedial Treatment on SLO-1

- Chip Seal Only
- After Sand Seal

SLO-1 Northbound

SLO-1 Southbound
Outline

• Project Background & Pavement Texture
• Macrotecture Measurement
• Bicycle Vibration Measurement
• Survey of Bicycle Ride Quality (Phase I)
• Remedial Treatment on SLO-1
• Additional Survey (Phase II)
• Remarks
<table>
<thead>
<tr>
<th>Group</th>
<th>No. of Sections</th>
<th>No. of Riders</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mon-198</td>
<td>16</td>
<td>24</td>
</tr>
<tr>
<td>SLO-1</td>
<td>3</td>
<td>11</td>
</tr>
<tr>
<td>Davis</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>Santa Rosa</td>
<td>6</td>
<td>26</td>
</tr>
<tr>
<td>Tahoe</td>
<td>4</td>
<td>16</td>
</tr>
<tr>
<td>Chico Velo</td>
<td>5</td>
<td>8</td>
</tr>
<tr>
<td>Alto Velo</td>
<td>4</td>
<td>16</td>
</tr>
<tr>
<td>Total</td>
<td>42</td>
<td>107</td>
</tr>
</tbody>
</table>
Outline

- Project Background & Pavement Texture
- Macrotexture Measurement
- Bicycle Vibration Measurement
- Survey of Bicycle Ride Quality (Phase I)
- Remedial Treatment on SLO-1
- Additional Survey (Phase II)
- Remarks
Remarks

• From preliminary results, 80% of riders rate pavements with 1.3 mm MPD as acceptable; 50% for 2.1 mm.
• Additional sand seal helped reduce the macrotexture (MPD) of the chip seal on SLO-1.
• Beside MPD (macrotexuture), IRI (roughness/unevenness) may also influence the bicyclist’s ride quality.
 • IRI is tuned for cars not bikes
 • Missing megatexture parameter
• Need to consider the balances & tradeoffs:
 • Ride quality (smoothness) and ride safety (skid resistance)
 • Vehicle users and bicycle users (different needs)
 • Performance and cost
Surface Treatment Macrotexture and Bicycle Ride Quality

Authors:
Hui Li, John T. Harvey, Calvin Thigpen, and Rongzong Wu

Part of Partnered Pavement Research Program (PPRC) Strategic Plan Element 4.47:
Impact of Chip Seal on Bicycle Ride Quality

Preliminary Results: Measurement of Macrotexture on Surface Treatments and Survey of Bicyclist Ride Quality on Mon-198 and SLO-1 Test Sections

Authors:
Hui Li, John Harvey, Rongzong Wu, Calvin Thigpen, Stefan Louw, Zhang Chen, Jeremy Lee, David Jones, and Amoh Razae

Part of Partnered Pavement Research Program (PPRC) Strategic Plan Element 4.47:
Impact of Chip Seal on Bicyclists

Next Steps (2014-2016)

- Correlate MPD and treatment specifications
- Repeat measurements and surveys for urban treatments, different bicycle types, broader demographic of riders
- Long-term monitoring of texture and roughness change for different treatments
- Develop improved models to characterize the impact of texture and roughness and vibration on bicycle ride quality
- Develop guidelines for design of preservation treatments for bicycle routes on state highways and local streets
Questions?

Thanks to Caltrans, participating bike clubs, NCE and other volunteers

John Harvey, jtharvey@ucdavis.edu
Hui Li, hili@ucdavis.edu