Analysis of the FWD Data Collected on Flexible Pavements during First Cycle of Accelerated Pavement Testing at NAPTF

Rongzong Wu, Qi Ren and John T. Harvey
University of California Pavement Research Center

Navneet Garg
FAA Technical Center

1/11/2016 95th TRB Annual Meeting, Washington D.C.
Outline

- Background
- FWD Testing Procedure and Schedule
- Back-Calculation Method
- Results and Discussions
- Summary and Conclusions
Background – The Facility

The Test Vehicle
Background - Layout and Cross Section
Background – Traffic Program

- Six-wheel gear for the north half
- Four-wheel gear for the south half
- Wheel load history
 - 45 kips (200kN) for 20,000 passes
 - 65 kips (289kN) for the next 30,000 passes
FWD Testing – Schedule and Layout

- **Uniformity Tests**
 - 10 ft x 10 ft grid
 - 8 months before trafficking

- **Routine Tests**
 - Three lines:
 - North and south wheelpaths
 - Centerline of the test track
 - Every now and then during trafficking
FWD Testing Lines

North Half

LANE 1
LANE 2
LANE 3
LANE 4
LANE 5

South Half

LANE 6
FWD Back-calculation Procedure

- Three layer system
 - Combine HMA layer
 - Combine AB and ASB layer
 - Bedrock below thick subgrade except for two layer pavements

- Multi-layer elastic theory

- Kalman Filter based search algorithm

- Matching measured deflections by adjusting layer stiffness
Results and Discussions

- Overall layer stiffness shortly after construction
- Effect of Temperature and Age on HMA stiffness
- Comparison of back-calculated and estimated stiffness master curves
- Effect of traffic on stiffness
 - HMA layer
 - Base layer
 - Bas + subbase combined layer
 - Subgrade
Overall Layer Stiffness – Chart

Uniformity Test Results

- Material=AB + ASB
- Material=P-401: HMA
- Material=Subgrade: High Strength Subgrade
- Material=Subgrade: Medium Strength Subgrade
- Material=Subgrade: Low Strength Subgrade
- Material=P-209: Crushed Stone Base
Overall Layer Stiffness - Numbers

<table>
<thead>
<tr>
<th>Test Item ID</th>
<th>P-401: HMA</th>
<th>P-209: Crushed Stone Base</th>
<th>AB + ASB</th>
<th>Subgrade</th>
</tr>
</thead>
<tbody>
<tr>
<td>LFS</td>
<td>4,326 (0.11)</td>
<td>219 (0.12)</td>
<td></td>
<td>50 (0.12)</td>
</tr>
<tr>
<td>LFC</td>
<td>4,558 (0.18)</td>
<td></td>
<td>176 (0.12)</td>
<td>52 (0.11)</td>
</tr>
<tr>
<td>MFC</td>
<td>3,783 (0.14)</td>
<td></td>
<td>161 (0.10)</td>
<td>93 (0.05)</td>
</tr>
<tr>
<td>MFS</td>
<td>3,166 (0.19)</td>
<td>584 (0.25)</td>
<td></td>
<td>106 (0.04)</td>
</tr>
<tr>
<td>HFC</td>
<td>4,683 (0.18)</td>
<td>182 (0.26)</td>
<td></td>
<td>179 (0.09)</td>
</tr>
<tr>
<td>HFS</td>
<td>4,759 (0.20)</td>
<td></td>
<td></td>
<td>215 (0.11)</td>
</tr>
</tbody>
</table>
Effect of Temperature and Aging on HMA Stiffness – LFS

P-401: HMA Layer in Test Item LFS

Back-Calculated Stiffness (MPa)

0 10 20 25
Pavement Surface Temperature (°C)

- Uniformity Test, Non-Centerline, 84 Days Old
- Routine Test, Centerline, 244 Days Old
- Routine Test, Centerline, 245 Days Old
- Routine Test, Centerline, 298 Days Old
- Routine Test, Centerline, 329 Days Old
- Routine Test, Centerline, More than 329 Days Old
Effect of Temperature and Aging on HMA Stiffness – LFS

P-401: HMA Layer in Test Item LFC

Back-Calculated Stiffness (MPa)

Pavement Surface Temperature (°C)
Comparison of Stiffness Master Curves

P-401: HMA Layer in Test Item LFC

- Back-Calculated for Centerline, More than 329 Days Old
- Estimated Stiffness Master Curve
- Estimated Stiffness Master Curve Scaled by 0.85

Back-Calculated Stiffness (MPa)

Pavement Surface Temperature (°C)
Effect of Traffic on HMA Stiffness - LFS

P-401: HMA Layer in Test Item LFS

Stiffness Ratio for Back-Calculated Stiffness

Number of Load Repetitions

×10^4
Effect of Traffic on HMA Stiffness - LFC

P-401: HMA Layer in Test Item LFC

Stiffness Ratio for Back-Calculated Stiffness

- LANE 2 (Tridem Axle Load)
- LANE 5 (Tandem Axle Load)
- Centerline, Untrafficked

Number of Load Repetitions $\times 10^4$
Effect of Traffic on Base Stiffness - LFS

P-209: Crushed Stone Base Layer in Test Item LFS

Stiffness Ratio for Back-Calculated Stiffness

Number of Load Repetitions

× 10^4
Effect of Traffic on Base + Subbase Stiffness - LFC
Effect of Traffic on Subgrade Stiffness - LFC

Low Strength Subgrade Layer in Test Item LFC

Stiffness Ratio for Back-Calculated Stiffness

Number of Load Repetitions

LANE 2 (Tridem Axle Load)
LANE 5 (Tandem Axle Load)
Centerline, Untrafficked
Observations

- Subgrade stiffnesses are strongly correlated to CBR values.
- Aging did occur in the first year but very little afterwards.
- Temperature effect on HMA stiffness can be predicted from mix design data.
- Effect of APT trafficking
 - Softening for HMA, crushed stone base, crushed stone base and aggregate subbase combined layer.
 - Stiffening for low strength subgrade.
Recommendations

- FWD data needs to be extensive to allow trend identification
- May need to account for material deterioration or strengthening when predicting pavement performance
- Temperature effect of HMA can be estimated from mix design
Questions?
Moisture Sensors in LFC

Cross Section for CC1_LFC_S along Traffic Direction

- Horizontal Distance (mm)
- Depth (mm)

- HMA
- Crushed Stone Base
- Crushed Quarry Screenings
- Low Strength Subgrade (CS&S)
All Moisture Readings

Moisture Sensor Readings at Different Depth for LFC

Moisture Content

Reading Time

Q2-99 Q3-99 Q4-99 Q1-00 Q2-00 Q3-00 Q4-00 Q1-01 Q2-01 Q3-01 Q4-01 Q1-02 Q2-02 Q3-02
Subgrade Moisture Content Change While Trafficking - LFC

Moisture Sensor Readings at Different Depth for LFC

Moisture Content

Repetition

Z=1301
Z=2336
Z=3352