Bang for Buck: Best Practices in Pavement Engineering

John Harvey
Sampat Kedarisetty
University of California Pavement Research Center
City and County Pavement Improvement Center

APWA
Richmond, CA
6 Nov 2018
City and County Pavement Improvement Center

www.ucprc.ucdavis.edu/ccpic

- Sponsored by League of California Cities and California State Association of Counties
- Chartered 28 September 2018
Mission and Vision for CCPIC

• Mission:
 – CCPIC works with local governments to increase pavement technical capability through timely, relevant, and practical support, training, outreach and research

• Vision:
 – Making Local Government-Managed Pavement Last Longer, Cost Less, and Be More Sustainable
Organization

• UC Partners
 – University of California Pavement Research Center (lead), administered by ITS Davis
 – UC Berkeley ITS Tech Transfer, administered by ITS Berkeley
• CSU partners
 – CSU-Chico, CSU-Long Beach, Cal Poly San Luis Obispo
 – Funding partner: Mineta Transportation Institute, San Jose State University
• Governance:
 – Governance Board consisting of 3 city and 3 county transportation professionals
• Funding
 – Funding to set up CCPIIC and initial activities from the state legislature, SB1 funding through the ITS at UCD and UCB
CCPIC Scope of Work

- Deliver training and technology transfer
- Develop guidance, specifications, and tools
- Establish and deliver a pavement engineering and management certificate program
- Create and operate a resource center
- Provide research and development support
So what can be done to make pavements more sustainable?

- FHWA Sustainable Pavements Task Group
 - Covers everything about pavement and sustainability
 - Tech briefs and webinars
- Google “FHWA sustainable pavement”

Converting performance information to treatment/cost sequence.

End of design period.

Years

Net Present Value

Rehabilitation

Prevention

Performance

End of design period.

Years
LCCA calculations

- Net present value = add up the costs over the analysis period, including discount rate
- Equivalent Uniform Annual Cost, spread NPV over time, with discount

$ (Agency Costs)

$ (User Costs)

Analysis Period

Years

Initial M R R

Salvage Value
Where can LCCA be implemented?

• PMS decision tree optimization
 – Condition trigger levels for treatment (timing)
 – Treatment selection
• Pavement type selection
• Policy evaluation
 – Materials changes
 – Construction quality specifications
 – Design methods
CCPIC LCCA Excel tool

Download at: http://www.ucprc.ucdavis.edu/ccpic/ or Google “CCPIC UCPRC”

• Excel tool to calculate Net Present Value, Salvage Value and Equivalent Uniform Annual Cost
• Can compare 3 scenarios side by side
• Can choose and edit the list and sequence of treatments
CCPIC LCCA Excel tool

- Excel tool to calculate Net Present Value, Salvage Value and Equivalent Uniform Annual Cost
- Can compare 3 scenarios side by side
- Can choose and edit the list and sequence of treatments
LCCA Excel Tool

Inputs
1. Treatment type
2. Year of work
3. Discount rate
4. Analysis period

Outputs
1. Total NPV
2. Total SV
3. EUAC

Scenario 1

<table>
<thead>
<tr>
<th>Analysis Period</th>
<th>Discount Rate</th>
<th>Total Net Present Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>3</td>
<td>$0.00</td>
</tr>
</tbody>
</table>

Clear table for Scenario 1

<table>
<thead>
<tr>
<th>Sequence of treatments</th>
<th>Treatment</th>
<th>Year of work</th>
<th>Inclusion in Analysis Period</th>
<th>NPV @ Discount Rate</th>
<th>SV @ Discount Rate</th>
<th>Remarks</th>
<th>Equivalent Uniform Annual Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
LCCA Excel tool

Editable:
- Functional Unit
- Treatment List: Cost, Life of Treatment

<table>
<thead>
<tr>
<th>Treatment Name</th>
<th>Treatment No.</th>
<th>Cost/SY</th>
<th>Total Cost</th>
<th>Life of Investment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shurry Seal-Type II</td>
<td>1</td>
<td>7</td>
<td>49280</td>
<td>3</td>
</tr>
<tr>
<td>Shurry Seal-Type III</td>
<td>2</td>
<td>7</td>
<td>49280</td>
<td>7</td>
</tr>
<tr>
<td>Microsurfacing-Type II</td>
<td>3</td>
<td>7</td>
<td>49280</td>
<td>5</td>
</tr>
<tr>
<td>Microsurfacing-Type III</td>
<td>4</td>
<td>7</td>
<td>49280</td>
<td>5</td>
</tr>
<tr>
<td>Chip Seal</td>
<td>5</td>
<td>10</td>
<td>70400</td>
<td>5</td>
</tr>
<tr>
<td>Rubberized Cape Seal</td>
<td>6</td>
<td>6</td>
<td>42240</td>
<td>7</td>
</tr>
<tr>
<td>Asphalt Overlay-1.5"</td>
<td>7</td>
<td>10</td>
<td>70400</td>
<td>10</td>
</tr>
<tr>
<td>Asphalt Overlay-2.5"</td>
<td>8</td>
<td>20</td>
<td>140800</td>
<td>13</td>
</tr>
<tr>
<td>Asphalt Mill and Fill</td>
<td>9</td>
<td>38</td>
<td>267520</td>
<td>20</td>
</tr>
<tr>
<td>Rubberized Asphalt Overlay</td>
<td>10</td>
<td>30</td>
<td>211200</td>
<td>20</td>
</tr>
<tr>
<td>FDR-PC-10"</td>
<td>11</td>
<td>40</td>
<td>281600</td>
<td>10</td>
</tr>
<tr>
<td>FDR-PC-12"</td>
<td>12</td>
<td>45</td>
<td>316800</td>
<td>15</td>
</tr>
<tr>
<td>FDR-PC-18"</td>
<td>13</td>
<td>50</td>
<td>352000</td>
<td>20</td>
</tr>
<tr>
<td>FDR-FA-10"</td>
<td>14</td>
<td>35</td>
<td>246400</td>
<td>7</td>
</tr>
<tr>
<td>FDR-FA-12"</td>
<td>15</td>
<td>40</td>
<td>281600</td>
<td>10</td>
</tr>
<tr>
<td>CIR-4"</td>
<td>16</td>
<td>25</td>
<td>176000</td>
<td>5</td>
</tr>
<tr>
<td>CIR-5"</td>
<td>17</td>
<td>27</td>
<td>190080</td>
<td>7</td>
</tr>
<tr>
<td>CIR-6"</td>
<td>18</td>
<td>30</td>
<td>211200</td>
<td>10</td>
</tr>
<tr>
<td>BCOA-4"</td>
<td>19</td>
<td>35</td>
<td>246400</td>
<td>7</td>
</tr>
<tr>
<td>BCOA-5"</td>
<td>20</td>
<td>37</td>
<td>260480</td>
<td>10</td>
</tr>
<tr>
<td>BCOA-6"</td>
<td>21</td>
<td>40</td>
<td>281600</td>
<td>12</td>
</tr>
<tr>
<td>Cape seal-2.5"</td>
<td>22</td>
<td>10</td>
<td>70400</td>
<td>5</td>
</tr>
<tr>
<td>Remove/replace</td>
<td>23</td>
<td>52</td>
<td>366080</td>
<td>20</td>
</tr>
<tr>
<td>Pulv HMA/compact</td>
<td>24</td>
<td>26</td>
<td>183040</td>
<td>20</td>
</tr>
</tbody>
</table>
Performance prediction is key to good pavement management and LCCA

- Pavement Management Systems
 - Performance estimates are typically in terms of pavement condition index (PCI)
Some changes that can be considered to improve life cycle cost

• Pavement management and preservation
 – Treatment timing
 – Treatment selection
 – Treatment sequence

• Asphalt compaction
Life cycle cost analysis results for alternative scenarios for asphalt pavement

Asphalt Mill and Fill - $38/SY
Microsurfacing - $14/SY

<table>
<thead>
<tr>
<th>Schedule A</th>
<th>Treatment</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Asphalt Mill and Fill</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Microsurfacing</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>Microsurfacing</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>Microsurfacing</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>Asphalt Mill and Fill</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>Microsurfacing</td>
<td>45</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Schedule B</th>
<th>Treatment</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Asphalt Mill and Fill</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Microsurfacing</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>Microsurfacing</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>Asphalt Mill and Fill</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td>Microsurfacing</td>
<td>42</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Schedule C</th>
<th>Treatment</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Asphalt Mill and Fill</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Microsurfacing</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>Asphalt Mill and Fill</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>Microsurfacing</td>
<td>41</td>
</tr>
</tbody>
</table>
Life cycle cost analysis results
Results will vary depending on relative costs, discount rate, performance estimates

1 In mile, total costs, 50 years analysis period, 4% discount

<table>
<thead>
<tr>
<th></th>
<th>Schedule A</th>
<th>Schedule B</th>
<th>Schedule C</th>
</tr>
</thead>
<tbody>
<tr>
<td>$700,000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$650,000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$600,000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$550,000</td>
<td>$507,956</td>
<td>$481,464</td>
<td></td>
</tr>
<tr>
<td>$500,000</td>
<td>$507,956</td>
<td>$481,464</td>
<td>$441,155</td>
</tr>
<tr>
<td>$450,000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$400,000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$350,000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$300,000</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Pavement management: Use of PCI vs measured cracking

- PCI is amalgamation of different distresses
- Can have same PCI for very different conditions
- Engineering meaning in the condition survey is lost
- Recommend
 - Use PCI as communication tool for management/public
 - Manage asphalt pavement considering:
 - Cracking: age and traffic caused
 - Other distresses (rutting, raveling)
Same PCI, different pavement condition

CASE 1: TRAFFIC LOADING RELATED, PCI = 34

<table>
<thead>
<tr>
<th>DISTRESS</th>
<th>SEVERITY</th>
<th>QUANTITY</th>
<th>DV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alligator Cracks</td>
<td>High</td>
<td>1x6</td>
<td>18</td>
</tr>
<tr>
<td>Alligator Cracks</td>
<td>Medium</td>
<td>1x4 1x5 1x7</td>
<td>17</td>
</tr>
<tr>
<td>Potholes</td>
<td>Medium</td>
<td>3</td>
<td>48</td>
</tr>
<tr>
<td>Potholes</td>
<td>Low</td>
<td>3</td>
<td>30</td>
</tr>
<tr>
<td>Rutting</td>
<td>Low</td>
<td>2x5 2x8</td>
<td>10</td>
</tr>
</tbody>
</table>

CASE 2: AGE, CONSTRUCTION, UTILITIES, OTHER FACTORS, PCI = 32

<table>
<thead>
<tr>
<th>DISTRESS</th>
<th>SEVERITY</th>
<th>QUANTITY</th>
<th>DV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Long/Trans Crack</td>
<td>High</td>
<td>15 20 8 6 12 18 6x7</td>
<td>43</td>
</tr>
<tr>
<td>Long/Trans Crack</td>
<td>Medium</td>
<td>25x2 18 13 9 10</td>
<td>20</td>
</tr>
<tr>
<td>Patching/Utility</td>
<td>High</td>
<td>25x4 25x2</td>
<td>40</td>
</tr>
<tr>
<td>Patching/Utility</td>
<td>Medium</td>
<td>12x6 4x7</td>
<td>20</td>
</tr>
<tr>
<td>Block Cracks</td>
<td>High</td>
<td>4x6 6x5</td>
<td>13</td>
</tr>
</tbody>
</table>
Variables in the PCI for asphalt pavement

- **Fatigue cracking and potholes caused by heavy loads:**
 - Alligator cracking
 - Potholes
- **Cracking caused by aging:**
 - Block cracking
 - Joint reflections
 - Longitudinal and transverse cracking

- **Other distresses**
 - Low ride quality
 - Bleeding
 - Bumps and sags
 - Corrugations
 - Depressions
 - Edge cracking
 - Lane/shoulder drop-off
 - Patching and utility cut patching
 - Polished aggregate
 - Rutting
 - Shoving
 - Slippage cracking
 - Swelling
 - Weathering and raveling
Bottom Up Fatigue Cracking

- Interaction of asphalt concrete layer, support of underlying structure, materials selection, construction compaction
- Traffic loading
 - Only the truck loads count, cars are too light
 - slower speeds = longer durations = bigger strains
- Environment
 - temperature
 - water sensitivity
 - aging
Fatigue Cracking

Bottom up cracking

Asphalt
Concrete
Base
Sub-Base
Subgrade

Tensile Strain ε_t
Initial Wheelpath Cracking
(transverse or longitudinal)
Cracks connect: Alligator Cracking
(Caltrans calls “Type B”)

![Alligator Cracking](image.png)
Fatigue Cracking in Wheelpaths
Reflective Cracking

Bottom up cracking

Asphalt
Concrete

Cracked AC, PCC or CTB

Base
Sub-Base
Subgrade
Reflection Crack over PCC Joint
Effect of asphalt construction compaction on axle loads to cracking

Simulation based on FHWA Westrack project field results

3 inch asphalt pavement

Axles to Cracking

<table>
<thead>
<tr>
<th>Axles to Cracking</th>
</tr>
</thead>
<tbody>
<tr>
<td>3,500,000</td>
</tr>
<tr>
<td>3,000,000</td>
</tr>
<tr>
<td>2,500,000</td>
</tr>
<tr>
<td>2,000,000</td>
</tr>
<tr>
<td>1,500,000</td>
</tr>
<tr>
<td>1,000,000</td>
</tr>
<tr>
<td>500,000</td>
</tr>
</tbody>
</table>

- 6.1 percent air-voids
- 12.0 percent air-voids

General rule: 1% increase in constructed air-voids = 10% reduction in fatigue life
Treatment for load related fatigue cracking

• Asphalt will fatigue
• Surface treatments will slow some
• Will need to do periodic mill and fill
• Do not let wheelpath cracking become extensive or must reconstruct
Aging of the Asphalt

- Aging of the asphalt
 - Caused by oxidation, volatilization
 - Faster if high permeability and temperature
 - Permeability greatly reduced with better asphalt compaction

- Effects
 - Stiffening of mix with time
 - Won’t relax stresses from thermal contraction as well
Block Cracking

- Typically caused by long-term aging of asphalt concrete and daily temperature cycling (expansion/contraction)
- May also be reflection cracking from shrinkage cracks in cement treated base
- Poor asphalt construction compaction allows air to enter and age the asphalt faster, accelerates aging
Block Cracking

Top down cracking
Aging mostly done by 5 years after placement

Stiffness increase from Aging

Mix and place

Years

0 5 10 15 20
Treatment for age-related cracking

• Keep the surface protected from aging
• Can potentially due perpetual slurries or microsurfacings
• What frequency?
 – Do not let cracking get extensive
 – But doing more frequently than needed can be a waste
Example fatigue vs age-related treatment sequences

Aging related distresses (no diminishing prevention treatment lives)

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asphalt Mill and Fill</td>
<td>0</td>
</tr>
<tr>
<td>Microsurfacing</td>
<td>12</td>
</tr>
<tr>
<td>Microsurfacing</td>
<td>20</td>
</tr>
<tr>
<td>Microsurfacing</td>
<td>28</td>
</tr>
<tr>
<td>Asphalt Mill and Fill</td>
<td>33</td>
</tr>
<tr>
<td>Microsurfacing</td>
<td>45</td>
</tr>
</tbody>
</table>

Load related distresses (diminishing prevention treatment lives)

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asphalt Mill and Fill</td>
<td>0</td>
</tr>
<tr>
<td>Microsurfacing</td>
<td>12</td>
</tr>
<tr>
<td>Microsurfacing</td>
<td>19</td>
</tr>
<tr>
<td>Microsurfacing</td>
<td>25</td>
</tr>
<tr>
<td>Asphalt Mill and Fill</td>
<td>29</td>
</tr>
<tr>
<td>Microsurfacing</td>
<td>41</td>
</tr>
<tr>
<td>Microsurfacing</td>
<td>48</td>
</tr>
</tbody>
</table>

Asphalt Mill and Fill - $38/SY
Microsurfacing - $14/SY
<table>
<thead>
<tr>
<th>Cost Comparison for Different Loading Patterns</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aging Related Distresses</td>
</tr>
<tr>
<td>$507,956</td>
</tr>
<tr>
<td>Loading Related Distresses (Diminishing Prevention Treatment Life)</td>
</tr>
<tr>
<td>$545,067</td>
</tr>
</tbody>
</table>
Recommendation for use of LCCA

• Pavement management
 – Use PCI in network-level analysis to set overall budget, measure network condition
 – Do treatment selection engineering work based on truck/bus traffic level, cracking and surface defects data, not PCI
 – Use your costs, cracking predictions and LCCA to develop best sequences of treatments
 • Look at your fatigue and aging-related cracking data
 • Estimate treatment lives
 – Learn to use LCCA to discuss with council/board
Recommendation for how to get good asphalt compaction

- Use a quantitative (QC/QA) specification to measure compaction
- Write spec in terms of \textit{in-place bulk density} and \textit{theoretical maximum density} (TMD) and not \textit{laboratory theoretical maximum density} (LTMD)
- Use cores or nuclear gauges calibrated for the specific mix/project to provide daily feedback to contractor and agency
- Apply payment reductions if they don’t meet your specification, and enforce those payment reductions
Caltrans experience with method spec vs using in-place measurement and penalties (QC/QA)

- Spec changed in 1996-98
- Very large culture change in Caltrans

“Trust but verify”
But what about?

• Won’t this increase the bid cost for my asphalt?

• Isn’t the cost of managing this specification high?

• Won’t coring damage my new pavement?

• What can I do to help my contractors meet and exceed the specification and further increase the life of my overlays?
Compaction effects repeated mill and fill

- 3% change in air-voids is about 30% change in cracking life

\[\text{Asphalt Mill and Fill - $38/SY} \]

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Year</th>
<th>Treatment</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asphalt Mill and Fill</td>
<td>0</td>
<td>Asphalt Mill and Fill</td>
<td>0</td>
</tr>
<tr>
<td>Asphalt Mill and Fill</td>
<td>18</td>
<td>Asphalt Mill and Fill</td>
<td>13</td>
</tr>
<tr>
<td>Asphalt Mill and Fill</td>
<td>36</td>
<td>Asphalt Mill and Fill</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Asphalt Mill and Fill</td>
<td>39</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Year</th>
<th>Treatment</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asphalt Mill and Fill</td>
<td>0</td>
<td>Asphalt Mill and Fill</td>
<td>0</td>
</tr>
<tr>
<td>Asphalt Mill and Fill</td>
<td>23</td>
<td>Asphalt Mill and Fill</td>
<td>23</td>
</tr>
<tr>
<td>Asphalt Mill and Fill</td>
<td>46</td>
<td>Asphalt Mill and Fill</td>
<td>46</td>
</tr>
</tbody>
</table>
Life cycle cost analysis results
effects of asphalt compaction

Compaction effect, continuous rehab strategy
(1 ln mile)

$426,086

$468,291

$584,559

$300,000

$350,000

$400,000

$450,000

$500,000

$550,000

$600,000

$650,000

$700,000

6% AV Good compaction

9% AV Usual practice

12% AV Bad compaction
Some other changes that can be considered to improve life cycle cost

- Update street and minor concrete mix specifications
 - Reduce cement content and use supplementary cementitious materials
- Full-depth reclamation
- Cold in-place recycling
- Bonded concrete overlays
Questions?

www.ucprc.ucdavis.edu/ccpic
Concrete mix specifications

• Older concrete specifications
 – Written to ensure enough cement to meet strength and durability requirements
 – Often included minimum cement content

• Modern concrete mix designs
 – Minimize need for portland cement
 – Replace with supplementary cementitious materials (SCM)
 – Minimize amount of cement paste in the mix: dense aggregate gradations
Concrete mix specifications

• What are SCMs?
 – Fly ash, natural pozzolans, slag cement
 – These can come pre-blended (new ASTM specs)
 – Caltrans also allows 5% replacement with ground limestone
 • Agencies are evaluating up to 15%

• These changes to mix design specs
 – Increase durability of the concrete
 – Decrease environmental impact

• When was the last time you reviewed your concrete specifications?
Effects on greenhouse gas emissions

- Mix designs from a city that hasn’t reviewed specs are:

```
<table>
<thead>
<tr>
<th>Scenario</th>
<th>Global Warming Potential (GWP)[kg CO2e] per 1 kg of PCC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Urban Street - no SCM</td>
<td>0.159</td>
</tr>
<tr>
<td>Playground - no SCM</td>
<td>0.122</td>
</tr>
<tr>
<td>State Highway - 15% SCM</td>
<td>0.107</td>
</tr>
</tbody>
</table>
```
What you need to do

• *Use dense aggregate gradations*: Reduces cost, shrinkage

• *Specify limits on shrinkage and strength*: Reduces water contents

• *Require quality control and quality assurance testing for strength, shrinkage, other properties of interest*. Small cost for sampling and testing

• *Require use of supplementary cementitious materials*. Tend to reduce shrinkage, improve durability, reduce greenhouse gas emissions, may reduce cost

• *Allow the use of blended cements (ASTM C595)*

• *Work with a concrete mix design expert to review your specifications and change them*
But what about?

• How do I know that these mixes will give me good performance?
• Will these changes in specifications cost me more?
• Are there any other issues such as constructability with these mixes?
Full-depth Reclamation (FDR)

• For badly cracked asphalt or to correct cross-slope
• Pulverize and stabilize (one pass), compact, overlay
• Stabilization options
 – Foamed asphalt (about 2.5 %) with cement (about 1%)
 • Need some granular material below the asphalt
 – Cement
 • If no granular material below asphalt
 • Enough cement to reach minimum strength and no more!
 – No stabilizer
 • Acts like granular base
 – Engineered emulsions
 • More work needed to develop recommendations
Cold Central Plant Recycling (CCPR)

- Like FDR but set up a mobile plant on site
- Mill out asphalt, process on site, put back
- Can do any required subgrade stabilization
Cold In-place Recycling (CIR)

- Partial depth (top 2 to 5 inches)
- Mill and stabilize, compact, overlay
- Stabilized with emulsion and a small amount of cement
- Must achieve correct gradation