City and County Pavement Improvement Center (CCPIC)
Pavement Financial and Environmental Sustainability, Some Best Practices

John Harvey, Erik Updyke

San Diego County Building Better Roads Working Group
October 5, 2020
Welcome To
CCPIC

- Sponsored by League of California Cities, County Engineers Association of California, and California State Association of Counties
- Chartered 28 September 2018

www.ucprc.ucdavis.edu/ccpic
Agenda

• Welcome and Introductions
• CCPIC:
 – Mission and Vision, Scope, Organization
 – Certificate Program
 – Planned Certificate Curriculum and New Course Development
• Worklist
• Technical Presentation
• Questions and Answers
CCPIC Mission and Vision

• Mission
 – CCPIC works with local governments to increase pavement technical capability through timely, relevant, and practical support, training, outreach and research

• Vision
 – Making local government-managed pavement last longer, cost less, and be more sustainable
CCPIC Organization

• University of California Partners
 – University of California Pavement Research Center (lead), administered and funded by ITS Davis
 – UC Berkeley ITS Tech Transfer, administered and funded by ITS Berkeley

• California State University Partners
 – CSU-Chico, CSU-Long Beach, Cal Poly San Luis Obispo
 – Funding partner: Mineta Transportation Institute, San Jose State University
CCPIC Organization

• Governance:
 – Chartered by League of California Cities, California State Association of Counties, County Engineers Association of California, also provide staff support
 – Governance Board consisting of 6 city and 6 county transportation professionals

• Current Funding
 – Seed funding for CCPIC set up and initial activities from SB1 funding through the ITS at UC Davis and UC Berkeley, and Mineta Transportation Institute at San Jose State University
CCPIC Scope

- Technology Transfer: training
- Technical resources: technical briefs, guidance, sample specifications, tools, and other resources
- Pavement engineering and management certificate program for working professionals: through UC Berkeley ITS Tech Transfer
- Resource center: outreach, questions, pilot study documentation, and forensic investigations
- Research and development: for local government needs that are not covered by State and Federal efforts
CCPIC Training: Certificate Program

• Pavement Engineering and Management Certificate Overview
 – For engineers, asset managers, upper-level managers, technicians and construction inspectors
 – 92 hours of training
 • 60 hours in core classes, 32 hours elective
 • Majority of classes to be offered online
 – In four categories:
 • Pavement Fundamentals
 • Pavement Management
 • Pavement Materials and Construction
 • Pavement Design

Status
 – Plan approved by Governance Board
 – Initial classes being delivered, including updated Tech Transfer classes and newly developed classes
CCPIC Training: Planned Certificate Curriculum

<table>
<thead>
<tr>
<th>Fundamentals</th>
<th>Hrs</th>
<th>Management</th>
<th>Hrs</th>
<th>Materials and Construction</th>
<th>Hrs</th>
<th>Design</th>
<th>Hrs</th>
</tr>
</thead>
<tbody>
<tr>
<td>CORE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CCA-01 Introduction to Pavement Engineering and Management</td>
<td>10</td>
<td>CCB-01 Life Cycle Cost Analysis</td>
<td>4</td>
<td>CCC-01 Asphalt Concrete Materials and Mix Design</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CCA-02 Pavement Sustainability</td>
<td>6</td>
<td>CCB-02 Pavement Management Systems and Preservation Strategies</td>
<td>16</td>
<td>CCC-02 Pavement Preservation Materials and Treatments</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CCC-03 Pavement and Hardscape Construction Specifications and Quality Control Management</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ELECTIVE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CCB-21 Financing and Cash Flow for Pavement Networks</td>
<td>4</td>
<td>CCC-21 Concrete Materials</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CCB-22 Integrated Asset Management</td>
<td>8</td>
<td>CCC-22 In-Place Recycling</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CCC-23 Gravel Roads Engineering, Construction, and Management</td>
<td>8</td>
<td>CCD-21 Asphalt and Concrete Pavement and Rehabilitation Structural Design</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CCC-24 Construction Processes and Scheduling</td>
<td>6</td>
<td>CCD-22 Design of Integrated Hardscape Assets</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CCC-25 Construction Inspection</td>
<td>16</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CCC-26 Pavement and Hardscape Construction Inspection</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CCC-27 Asphalt Pavement Maintenance Construction</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TS-10 Work Zone Safety</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0</td>
<td></td>
<td>12</td>
<td></td>
<td>70</td>
<td></td>
<td>24</td>
</tr>
<tr>
<td>FUNDAMENTALS, ELECTIVE</td>
<td></td>
<td>MANAGEMENT, ELECTIVE</td>
<td></td>
<td>MATERIALS AND CONSTRUCTION, ELECTIVE</td>
<td></td>
<td>DESIGN, ELECTIVE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>16</td>
<td></td>
<td>32</td>
<td></td>
<td>94</td>
<td></td>
<td>24</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
CCPIC Training: New Course Development

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Instructor(s)</th>
<th>Expected</th>
<th>Format</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCA-01</td>
<td>Introduction to Pavement Engineering and Management</td>
<td>Harvey</td>
<td>Completed</td>
<td>Online</td>
<td>10 hours</td>
</tr>
<tr>
<td>CCA-02</td>
<td>Pavement Sustainability</td>
<td>Harvey</td>
<td>Summer 2020</td>
<td>Online</td>
<td>6 hours</td>
</tr>
<tr>
<td>CCB-01</td>
<td>Pavement Life Cycle Cost Analysis</td>
<td>Hicks, Cheng</td>
<td>Completed</td>
<td>Online</td>
<td>4 hours</td>
</tr>
<tr>
<td>CCB-02</td>
<td>Pavement Management Systems and Preservation Strategies</td>
<td>Yapp, Signore</td>
<td>Completed</td>
<td>Classroom Online</td>
<td>16 hours TBD</td>
</tr>
<tr>
<td>CCC-01</td>
<td>Asphalt Concrete Materials and Mix Design</td>
<td></td>
<td>Summer 2021</td>
<td>Online</td>
<td>8 hours</td>
</tr>
<tr>
<td>CCC-02</td>
<td>Pavement Preservation Materials and Treatments</td>
<td>Hicks, Cheng</td>
<td>Late Fall 2020</td>
<td>Online</td>
<td>8 hours</td>
</tr>
<tr>
<td>CCC-03</td>
<td>Pavement and Hardscape Construction Specifications and Quality Control Management</td>
<td></td>
<td>Fall 2021</td>
<td>TBD</td>
<td>8 hours</td>
</tr>
<tr>
<td>CCC-23</td>
<td>Gravel Roads Engineering, Construction, and Management</td>
<td>Jones</td>
<td>Spring 2021</td>
<td>Online</td>
<td>8 hours</td>
</tr>
</tbody>
</table>
Worklist

• **Pavement Condition Index (PCI) 4-Pager**
 – A four page paper describing how PCI is measured, what it doesn’t measure, and how a similar or the same PCI for different road segments may have different implications for pavement preservation and pavement rehabilitation strategies.
 – *Issue October 2020*

• **Tech Topics/Pavement Technology Updates**
 – *In Progress*
• Superpave Lite (“Hot Mix Asphalt – Local Government” [HMA-LG])
 – Lead the development of specifications for a Superpave specification for use by local agencies.
 – Establish mix design criteria and other appropriate technical requirements.
 – First version a restructured and edited version of Caltrans Section 39.
 – Draft version in progress. **Expected first draft to be submitted to Cal APA for comments in mid-October.**
Worklist

• Local Agency Survey:
 – Conduct a survey of local agencies on the use of Superpave, interest in a Superpave specification, RAP, warm mix, and other related. Develop a contact list of each Agency’s “go to” person. Results will provide insight and serve as a basis for future CCPIC initiatives.
 – In Progress
• Interested in being on the “Go to” list?

✓ Go to the CCPIC website. Under “Pavement Contact List”, click on “Click to join ...” and complete the form. Thank you!
Proposed New Technical Projects

• Site Investigation Guidance Manual
 ➢ Prepare and publish a site investigation guidance manual for local agency projects based on the manual currently being developed for Caltrans. Contents will include a discussion of destructive and non-destructive tests and frequencies.
 ➢ Begin review and editing once Caltrans version is complete.

• Specifications for Cold-In-Place and Cold Central Plant Recycling
 ➢ Begin once UCPRC completes research, analysis, and recommendations, and publishes report for Caltrans.
Proposed New Technical Projects

- **Reclaimed Asphalt Pavement (RAP) 101**
 - Prepare and publish a four-page technical brief on RAP, its effect on PG binder grades and HMA/AC mixtures, percent binder replacement, fractionation, and recycling agents.
 - Begin once PCI 4-pager is published and posted.

- **Long Life/Perpetual Pavements for Local Agencies**
 - Prepare and publish a four-page technical brief on the fundamentals and principles of long life and perpetual pavements and how they can be applied to Local Agency projects.
 - Not scheduled
CCPIC Website
www.ucprc.ucdavis.edu/ccpic

- Pavement training
- Best practices technical briefs
- Tools
- Unpaved roads
- Peer-to-peer
How to get involved?

• Get training
• Get your organization to take training
• Host in-person training classes
• Read the tech briefs and see if your agency can make improvements
 – See the draft specification language
 – We can support you
• Get involved with governance board
• Start a peer-to-peer chat group
• Take a look at the tools on the website
How to figure out most cost-effective strategies: Use PMS data and life cycle cost analysis

• Understanding performance of your pavements is key to good pavement management and life cycle cost analysis (LCCA)
 – Performance estimates are typically in terms of pavement condition index (PCI)
 – Agencies need to go one step behind PCI to understand performance, can do this themselves
PCI is amalgamation of different distresses

- Can have same PCI for very different conditions
- Engineering meaning in the condition survey is lost

Recommend

- Use PCI as communication tool for management/public
- Manage asphalt pavement considering:
 - Cracking: age and traffic caused
 - Other distresses (rutting, raveling)

CCPIC working on Tech Brief regarding use of PCI and cracking data.
Same PCI, different pavement condition:

CASE 1: TRAFFIC LOADING RELATED, PCI = 34

<table>
<thead>
<tr>
<th>DISTRESS</th>
<th>SEVERITY</th>
<th>QUANTITY</th>
<th>DV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alligator Cracks</td>
<td>High</td>
<td>1x6</td>
<td>18</td>
</tr>
<tr>
<td>Alligator Cracks</td>
<td>Medium</td>
<td>1x4 1x5 1x7</td>
<td>17</td>
</tr>
<tr>
<td>Potholes</td>
<td>Medium</td>
<td>3</td>
<td>48</td>
</tr>
<tr>
<td>Potholes</td>
<td>Low</td>
<td>3</td>
<td>30</td>
</tr>
<tr>
<td>Rutting</td>
<td>Low</td>
<td>2x5 2x8</td>
<td>10</td>
</tr>
</tbody>
</table>

CASE 2: AGE, CONSTRUCTION, UTILITIES, OTHER FACTORS, PCI = 32

<table>
<thead>
<tr>
<th>DISTRESS</th>
<th>SEVERITY</th>
<th>QUANTITY</th>
<th>DV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Long/Trans Crack</td>
<td>High</td>
<td>15x20 8x6 12x18 6x7</td>
<td>43</td>
</tr>
<tr>
<td>Long/Trans Crack</td>
<td>Medium</td>
<td>25x2 18x13 9x10</td>
<td>20</td>
</tr>
<tr>
<td>Patching/Utility</td>
<td>High</td>
<td>25x4 25x2</td>
<td>40</td>
</tr>
<tr>
<td>Patching/Utility</td>
<td>Medium</td>
<td>12x6 4x7</td>
<td>20</td>
</tr>
<tr>
<td>Block Cracks</td>
<td>High</td>
<td>4x6 6x5</td>
<td>13</td>
</tr>
</tbody>
</table>
Variables in the PCI for Asphalt Pavement

- Fatigue cracking and potholes caused by heavy loads:
 - Alligator cracking
 - Potholes
- Cracking caused by aging:
 - Block cracking
 - Joint reflections
 - Longitudinal and transverse cracking

Other distresses
- Low ride quality
- Bleeding
- Bumps and sags
- Corrugations
- Depressions
- Edge cracking
- Lane/shoulder drop-off
- Patching and utility cut patching
- Polished aggregate
- Rutting
- Shoving
- Slippage cracking
- Swelling
- Weathering and raveling
Bottom-Up Fatigue Cracking

• Interaction of asphalt concrete layer, support of underlying structure, materials selection, construction compaction

• Traffic loading
 • Only the truck loads count, cars are too light
 • slower speeds = longer durations = bigger strains

• Environment
 • temperature
 • water sensitivity
 • aging
Top-Down Fatigue Cracking

- Identified in the 1990s
- Cracking due to high tensile and shear stresses at the HMA surface near edges of truck tires

Tension causing top down

Shear causing top down

Tension causing bottom up
Top-Down Fatigue Cracking

- Thin HMA (< 4"): Fatigue cracking generally starts at the top

- Thick HMA (> 4"): Fatigue cracking generally starts at the bottom

 Note, thickness of AC in photo on the previous slide is 20”

- Traffic loading: High truck tire pressures
Initial Wheel Path Cracking (transverse or longitudinal)

- Distress descriptions can be seen in FHWA Distress Identification Manual and
- Maintenance Technical Advisory Guide, Volume I, Chapter 1
Cracks connected: Alligator Cracking
Fatigue Cracking in Wheel Paths
Treatment for Load-Related Fatigue Cracking

- Fatigue cracking becomes alligator cracking, and eventually forms potholes
- Surface treatments will slow a little, but mostly helps with block cracking, not fatigue
- Will need to do periodic mill and fill with digouts of localized deep cracking
- Mill and fill may not be cost-effective once alligator cracking is extensive
 - Consider partial-depth or full-depth reclamation (FDR) cold in-place recycling depending on crack depth
- Do not let wheelpath cracking become extensive or must reconstruct

Extensive and likely deep alligator cracking, Starting to form potholes
Aging of the Asphalt

• Aging of the asphalt
 – Caused by oxidation, volatilization
 – Faster if high permeability and temperature
 – Permeability greatly reduced with better asphalt compaction

• Effects
 – Stiffening of mix with time
 – Won’t relax stresses from thermal contraction as well

Aging
mostly done by 5 years after placement

![Graph showing stiffness increase over time](attachment:stiffness_increase_graph.png)

- Stiffness increase from aging
- 2 to 5 times stiffer, much more elastic, less viscous
Block Cracking

- Typically caused by long-term aging of asphalt concrete and daily temperature cycling (expansion/contraction)
- May also be reflection cracking from shrinkage cracks in cement treated base
- Poor asphalt construction compaction allows air to enter and age the asphalt faster, accelerates aging

Good compaction limits entry of air and slows oxidation
Block Cracking

Top down cracking

Lgam.wdfiles.com
Treatment for age-related cracking:

- Keep the surface protected from aging
- Can potentially use perpetual fogs, slurries or microsurfacing
 - Use appropriate treatment for HMA or RHMA
- What frequency?
 - After aging has progressed
 - About 7 to 12 years
 - Before cracking starts
 - Do not let cracking get extensive
 - Doing more frequently than needed can be a waste
Other Distresses: Delamination/Debonding

- Due to insufficient tack coat application.
- Accelerated by poor compaction leading to higher air voids and permeability.
- Accelerated by lack of drainage.
Other Distresses: Delamination/Debonding

- Lack of bonding reduces overlay fatigue life by about 50%, even if no shoving
- Due to insufficient tack coat application
- Surface must be dry, clean, free of dust and residual millings
- Place between lifts, even if underlying lift is still hot
- Specify by residual amount
- Track-resistant materials available
- Spray pavers available
Tack Coat Application

- Proper tack coat application results in the pavement layers acting as a composite section.
- Analogous to glue used in structural laminated beam.
- Uniform application over the pavement surface, not streaked.
- Ensure spray bar is pressurized and discharge cones overlap at least twice.
- Encourage proper application by making a **separate Bid Item**.
Questions to ask when determining the next treatment:

• Are the cracks due to fatigue in the wheel paths (traffic), or aging of the entire surface (environment), or both?

• Is the network-level strategy in the PMS appropriate for the types of cracking?

• Did the last project on the same route perform as expected? If not:
 ❑ What’s changed?
 ❑ Is the structural section adequate?
 ❑ Was a thorough project-level investigation, associated testing, and calculations performed?
 ❑ Was the appropriate strategy selected?
 ❑ What binder was used? Should a modified binder (polymer, asphalt-rubber) be used in the next project (particularly useful if inlay (“mill & fill”)/overlaying cracking)?
Pavement “MRDI” Input for Selecting Next Treatment

• **M = Materials:** What is the structural section composed of? Subgrade, base material type and thickness, HMA/AC (gradation, binder type, thickness).

• **R = Review:** Completed projects at 3, 5, and 10-year milestones.

• **D = Desktop:** As-built plans, material testing records, traffic counts, traffic index calculations/projections, inspector records, change orders.

• **I = Investigation:** Was a project-level site investigation performed? Borings, Cores, Dynamic Cone Penetrometer (DCP), Falling Weight Deflectometer (FWD), Testing (SE, R-Value/CBR, PI).
Life Cycle Cost Analysis

- Net present value = add up the costs over the analysis period, including discount rate
- Equivalent Uniform Annual Cost, spread NPV over time, with discount

\[\text{(Agency Costs)} \]
\[\text{(User Costs)} \]
CCPIC LCCA Excel tool

- Excel tool to calculate Net Present Value, Salvage Value and Equivalent Uniform Annual Cost
- Can compare 3 scenarios side by side
- Can choose and edit the list and sequence of treatments
- Download at CCPIC website
Effect of Compaction on Fatigue Life

- Use a quantitative (QC/QA) specification to measure compaction
- Write spec in terms of *in-place bulk density* and *theoretical maximum density* (TMD) and not *laboratory theoretical maximum density* (LTMD)
- Use cores or nuclear gauges calibrated for the specific mix/project to provide daily feedback to contractor and agency
- Apply payment reductions if they don’t meet your specification, and enforce those payment reductions
- Future change to the Greenbook, Change No. 301SM, will incorporate CCPIC recommendations for asphalt compaction

General rule:

1% increase in constructed air-voids = 10% reduction in fatigue life
• Won’t this increase the bid cost for my asphalt?
• Isn’t the cost of managing this specification high?
• Won’t coring damage my new pavement?
• What can I do to help my contractors meet and exceed the specification and further increase the life of my overlays?
Life Cycle Cost Analysis: Effects of Asphalt Compaction

Compaction effect, continuous rehab strategy (1 ln mile)

- 6% AV Good compaction: $426,086
- 9% AV Usual practice: $468,291
- 12% AV Bad compaction: $584,559
Main Takeaways

• Ability to make good engineering decisions regarding timing and type of treatment based only on PCI is limited; use the cracking data

• Life cycle cost analysis (LCCA) practical tool to determine most cost-effective strategies
 – Needs good performance estimates, agencies can use their own information
 – Focus on cracking, separated by:
 • Streets with heavy trucks/buses, wheelpath fatigue cracking and age related cracking, need rehabilitation eventually
 • Streets with no heavy vehicles, age related cracking only, can use only preservation treatments if timely

• Good asphalt compaction specification is most cost-effective change
 – 92% relative to theoretical maximum density not laboratory maximum density
 – Must be effectively enforced to work

• There are other things that can be done: see CCPIIC training
So what can be done to make pavements more sustainable?

- FHWA Sustainable Pavements Task Group
 - Covers everything about pavement and sustainability
 - Cost
 - Environment
 - They usually go together
 - Tech briefs and webinars
References/Links

• University of California Pavement Research Center (UCPRC):
 www.ucprc.ucdavis.edu

• Maintenance Technical Advisory Guides:
 https://www.csuchico.edu/cp2c/library/caltrans-documents.shtml

• FHWA “Distress Identification Manual:"

• FHWA “Towards Sustainable Pavement Systems:"
www.ucprc.ucdavis.edu/ccpic