Challenges and Opportunities in Pavement Preservation

Public Works Officers Insitute
Monterey, CA
March 18, 2020
Presentation canceled by Covid closure
www.ucprc.ucdavis.edu/ccpic

• Funded through SB1 by:
 • Institute of Transportation Studies at UC Davis and UC Berkeley
 • Mineta Transportation Institute, San Jose State University

• Sponsored by:
 • League of California Cities
 • County Engineers of California
 • California State Association of Counties
CCPIC Mission and Vision

• Mission
 • CCPIC works with local governments to increase pavement technical capability through timely, relevant, and practical support, training, outreach and research

• Vision
 • Making local government-managed pavement last longer, cost less, and be more sustainable

• CCPIC training:
 • www.techtransfer.berkeley.edu/training/pavement-courses
 • Or go through CCPIC website
Today’s Presentations

• Moderator:
 • Shadi Saadeh, CSU Long Beach

• Use of life cycle cost analysis to select and program appropriate preservation treatments
 • Sampat Kedarisetty, UC Pavement Research Center, UC Davis

• How to get maximum performance out of preservation treatments through specification and quality assurance
 • DingXin Cheng, California Pavement Preservation Center, CSU Chico

• Approaches for delivering more sustainable and multi-functional pavement
 • John Harvey, UC Pavement Research Center, UC Davis

• Questions and answers
PWOI 2020
Life Cycle Cost Analysis in Pavement Engineering

Presented by Sampat Kedarisetty, PhD Candidate, UC Davis
Introduction – Life Cycle Cost Analysis

• *Shahin* described LCCA as an economic tool that can be used to analyze investments or projects that have long lives and require large amounts of capital.

• Enables comparison of long term strategies using Net Present Value (NPV) and Equivalent Uniform Annual Cost (EUAC)

\[
NPV = \text{Initial cost} + \sum_{k=1}^{N} \text{Rehab Cost}_k \left[\frac{1}{(1 + i)^n} \right] - SV
\]

where \(i \) is the Discount rate (~4%)
and \(n \) is the year of work for Rehab \(k \) and
\(SV \) is the Salvage value of any investment left at the end of the analysis period
Life Cycle Cost Analysis (LCCA) Basics

- Ride Quality
- Structural Capacity

Field Maintenance Pavement Preservation

Needs attention
Unacceptable
Life Cycle Cost Analysis (LCCA) Basics

Converting performance information to treatment/cost sequence
Life Cycle Cost Analysis (LCCA) Basics

- Net present value = add up the costs over the analysis period, including discount rate
- Equivalent Uniform Annual Cost, spread NPV over time, with discount
Life Cycle Cost Analysis (LCCA) Tool

CCPIC LCCA Excel tool
Download at: http://www.ucprc.ucdavis.edu/ccpic/
or Google “CCPIC UCPRC”

- Excel tool to calculate Net Present Value, Salvage Value and Equivalent Uniform Annual Cost
- Can compare 3 scenarios side by side
- Can choose and edit the list and sequence of treatments
CCPIC LCCA Excel tool

- Excel tool to calculate Net Present Value, Salvage Value and Equivalent Uniform Annual Cost
- Can compare 3 scenarios side by side
- Can choose and edit the list and sequence of treatments
CCPIC LCCA Excel tool

<table>
<thead>
<tr>
<th>Scenario 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inputs</td>
</tr>
<tr>
<td>1. Treatment type</td>
</tr>
<tr>
<td>2. Year of work</td>
</tr>
<tr>
<td>3. Discount rate</td>
</tr>
<tr>
<td>4. Analysis period</td>
</tr>
</tbody>
</table>

| **Outputs** |
| 1. Total NPV |
| 2. Total SV |
| 3. EUAC |

Analysis Period
- 50

Discount Rate
- 3

Total Net Present Value
- $0.00

Total Salvage Value
- $0.00

Sequence of treatment
- Treatment No.
- Year of work
- Inclusion in Analysis Period
- NPV at Discount Rate
- SV at Discount Rate
- Remarks
- Equivalent Uniform Annual Cost

<table>
<thead>
<tr>
<th>Treatment</th>
<th>No.</th>
<th>Year of Work</th>
<th>Inclusion in Analysis Period</th>
<th>NPV @ Discount Rate</th>
<th>SV @ Discount Rate</th>
<th>Remarks</th>
<th>EUAC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shary Seal-Type II</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shary Seal-Type III</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Microsurfacing-Type II</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Microsurfacing-Type III</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chip Seal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rubberized Cape Seal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asphalt Overlay-1.5"</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asphalt Overlay-2.5"</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asphalt Mill and Fill</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rubberized Asphalt Over</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FDR-PC-10"</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FDR-PC-12"</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FDR-PC-18"</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FDR-FA-10"</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FDR-FA-12"</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
CCPIC LCCA Excel tool

- Functional Unit
- Treatment List: Cost, Life of Treatment

<table>
<thead>
<tr>
<th>Treatment Name</th>
<th>Treatment No.</th>
<th>Cost/SY</th>
<th>Cost/Functional Unit</th>
<th>Life of Investment</th>
</tr>
</thead>
<tbody>
<tr>
<td>PME chip seal</td>
<td>1 $</td>
<td>4.50</td>
<td>31,680</td>
<td>6</td>
</tr>
<tr>
<td>AR chip seal</td>
<td>2 $</td>
<td>6.20</td>
<td>43,648</td>
<td>8</td>
</tr>
<tr>
<td>Type II slurry</td>
<td>3 $</td>
<td>5.50</td>
<td>38,720</td>
<td>5</td>
</tr>
<tr>
<td>Microsurfacing-Type II</td>
<td>4 $</td>
<td>5.80</td>
<td>40,832</td>
<td>7</td>
</tr>
<tr>
<td>PME cape seal</td>
<td>5 $</td>
<td>10.00</td>
<td>70,400</td>
<td>8</td>
</tr>
<tr>
<td>AC overlay 1.5 inches</td>
<td>6 $</td>
<td>12.00</td>
<td>84,480</td>
<td>10</td>
</tr>
<tr>
<td>AR cape seal</td>
<td>7 $</td>
<td>11.70</td>
<td>82,368</td>
<td>10</td>
</tr>
<tr>
<td>Asphalt Rubber Overlay 1.5"</td>
<td>8 $</td>
<td>15.00</td>
<td>105,600</td>
<td>15</td>
</tr>
<tr>
<td>AC mill and fill 1.5 inches</td>
<td>9 $</td>
<td>17.00</td>
<td>119,680</td>
<td>12</td>
</tr>
<tr>
<td>AC overlay 2.5 inches</td>
<td>10 $</td>
<td>20.00</td>
<td>140,800</td>
<td>15</td>
</tr>
<tr>
<td>Asphalt Rubber Mill and Fill 1.5"</td>
<td>11 $</td>
<td>20.00</td>
<td>140,800</td>
<td>15</td>
</tr>
<tr>
<td>Rubberized HMA-2.5"</td>
<td>12 $</td>
<td>25.00</td>
<td>176,000</td>
<td>20</td>
</tr>
<tr>
<td>CIR-4" with thin overlay</td>
<td>13 $</td>
<td>25.00</td>
<td>176,000</td>
<td>12</td>
</tr>
<tr>
<td>AC mill and fill 2.5 inches</td>
<td>14 $</td>
<td>30.00</td>
<td>211,200</td>
<td>15</td>
</tr>
<tr>
<td>FDR-PC-8" + 2.5</td>
<td>15 $</td>
<td>33.28</td>
<td>234,291</td>
<td>15</td>
</tr>
<tr>
<td>FDR-PC-10" + 2.5 AC</td>
<td>16 $</td>
<td>40.00</td>
<td>281,600</td>
<td>20</td>
</tr>
<tr>
<td>FDR-PC-12" + 2.5 AC</td>
<td>17 $</td>
<td>45.00</td>
<td>316,800</td>
<td>25</td>
</tr>
<tr>
<td>FDR-FA-10" + 2.5 AC</td>
<td>18 $</td>
<td>45.00</td>
<td>316,800</td>
<td>20</td>
</tr>
<tr>
<td>FDR-FA-12" + 2.5 AC</td>
<td>19 $</td>
<td>50.00</td>
<td>352,000</td>
<td>25</td>
</tr>
</tbody>
</table>
Life Cycle Cost Analysis (LCCA)

Performance prediction is key to good pavement management and LCCA

- Pavement Management Systems
 - Performance estimates are typically in terms of pavement condition index (PCI)

Figure B.4 PMS Software Used By Cities And Counties

Local Streets and Roads 2018
Life Cycle Cost Analysis (LCCA)-PCI

- PCI is amalgamation of different distresses
- Can have same PCI for very different conditions
- Engineering meaning in the condition survey is lost
- Recommend
 - Use PCI as communication tool for management/public
 - Manage asphalt pavement considering:
 - Cracking: age and traffic caused
 - Other distresses (rutting, raveling)
Data obtained from four local government agencies for performance modeling:
 • City of San Jose
 • City of Berkeley
 • City of Mountain view
 • County of Los Angeles

Data access obtained from the City of San Jose, Berkeley and Mountain View: Full access to download and extract all available data. More than 4 million rows of performance history and maintenance and rehabilitation history extracted
Life Cycle Cost Analysis (LCCA) Pilot

Case 1: Traffic Loading Related, PCI = 34

<table>
<thead>
<tr>
<th>Distress</th>
<th>Severity</th>
<th>Quantity</th>
<th>DV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alligator Cracks</td>
<td>High</td>
<td>1x6</td>
<td>18</td>
</tr>
<tr>
<td>Alligator Cracks</td>
<td>Medium</td>
<td>1x4 1x5 1x7</td>
<td>17</td>
</tr>
<tr>
<td>Potholes</td>
<td>Medium</td>
<td>3</td>
<td>48</td>
</tr>
<tr>
<td>Potholes</td>
<td>Low</td>
<td>3</td>
<td>30</td>
</tr>
<tr>
<td>Rutting</td>
<td>Low</td>
<td>2x5 2x8</td>
<td>10</td>
</tr>
</tbody>
</table>

Case 2: Age, Construction, Utilities, Other Factors, PCI = 32

<table>
<thead>
<tr>
<th>Distress</th>
<th>Severity</th>
<th>Quantity</th>
<th>DV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Long/Trans Crack</td>
<td>High</td>
<td>15 20 8 6 12 18 6x7</td>
<td>43</td>
</tr>
<tr>
<td>Long/Trans Crack</td>
<td>Medium</td>
<td>25x2 18 13 9 10</td>
<td>20</td>
</tr>
<tr>
<td>Patching/Utility</td>
<td>High</td>
<td>25x4 25x2</td>
<td>40</td>
</tr>
<tr>
<td>Patching/Utility</td>
<td>Medium</td>
<td>12x6 4x7</td>
<td>20</td>
</tr>
<tr>
<td>Block Cracks</td>
<td>High</td>
<td>4x6 6x5</td>
<td>13</td>
</tr>
</tbody>
</table>

Same PCI, different pavement condition
Life Cycle Cost Analysis (LCCA) Pilot-Observations

- Wide variation in performance depending on street type, underlying pavement structure and previous treatment
- Initial study shows agencies treating different causes of distresses similarly; pavement treatment should change according to the distresses so that the pavements remain functional longer
- Initial studies also show that treatment selection can be a major output of the pilot
- LCCA helps agencies plan for different treatments and treatment sequences
Life Cycle Cost Analysis (LCCA)

Some changes that can be considered to improve life cycle cost

• Pavement management and preservation
 • Treatment timing
 • Treatment selection
 • Treatment sequence

• Asphalt compaction
Life Cycle Cost Analysis (LCCA) - Effect of timing

Asphalt Mill and Fill - $38/SY
Microsurfacing - $14/SY

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Year</th>
<th>2000</th>
<th>2012</th>
<th>2020</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asphalt Mill and Fill</td>
<td>0</td>
<td>$38</td>
<td>$38</td>
<td>$38</td>
</tr>
<tr>
<td>Microsurfacing</td>
<td>12</td>
<td>$14</td>
<td>$14</td>
<td>$14</td>
</tr>
<tr>
<td>Microsurfacing</td>
<td>20</td>
<td>$14</td>
<td>$14</td>
<td>$14</td>
</tr>
<tr>
<td>Microsurfacing</td>
<td>28</td>
<td>$14</td>
<td>$14</td>
<td>$14</td>
</tr>
<tr>
<td>Asphalt Mill and Fill</td>
<td>33</td>
<td>$38</td>
<td>$38</td>
<td>$38</td>
</tr>
<tr>
<td>Microsurfacing</td>
<td>45</td>
<td>$14</td>
<td>$14</td>
<td>$14</td>
</tr>
</tbody>
</table>

Schedule A

- 1 in mile, total costs, 50 years analysis period, 4% discount

<table>
<thead>
<tr>
<th>Year</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>$38,000,000</td>
</tr>
<tr>
<td>13</td>
<td>$441,155</td>
</tr>
<tr>
<td>23</td>
<td>$441,155</td>
</tr>
<tr>
<td>29</td>
<td>$441,155</td>
</tr>
<tr>
<td>42</td>
<td>$441,155</td>
</tr>
</tbody>
</table>

Schedule B

<table>
<thead>
<tr>
<th>Year</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>$500,000</td>
</tr>
<tr>
<td>23</td>
<td>$500,000</td>
</tr>
<tr>
<td>29</td>
<td>$500,000</td>
</tr>
<tr>
<td>42</td>
<td>$500,000</td>
</tr>
</tbody>
</table>

Schedule C

<table>
<thead>
<tr>
<th>Year</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>$350,000</td>
</tr>
<tr>
<td>23</td>
<td>$350,000</td>
</tr>
<tr>
<td>29</td>
<td>$350,000</td>
</tr>
<tr>
<td>42</td>
<td>$350,000</td>
</tr>
</tbody>
</table>

The charts show the total costs for each schedule over a 50-year analysis period, with a 4% discount.
Life Cycle Cost Analysis (LCCA) - Treatment Sequences

Asphalt Mill and Fill - $38/SY
Microsurfacing - $14/SY

<table>
<thead>
<tr>
<th>Year</th>
<th>Asphalt Mill and Fill</th>
<th>Microsurfacing</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td></td>
<td></td>
</tr>
<tr>
<td>33</td>
<td></td>
<td></td>
</tr>
<tr>
<td>45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>48</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Aging related distresses (no diminishing prevention treatment lives)

<table>
<thead>
<tr>
<th>Year</th>
<th>Asphalt Mill and Fill</th>
<th>Microsurfacing</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td></td>
<td></td>
</tr>
<tr>
<td>41</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Load related distresses (diminishing prevention treatment life)

Load comparison for different loading patterns

- Aging related distresses: $507,956
- Loading related distresses: $545,067
Life Cycle Cost Analysis (LCCA)-Compaction Effects

Asphalt Mill and Fill - $38/SY
Microsurfacing - $14/SY

- 3% change in air voids is about 30% change in cracking life

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Year</th>
<th>Compaction Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asphalt Mill and Fill</td>
<td>0</td>
<td>Usual practice</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>9% AV</td>
</tr>
<tr>
<td></td>
<td>36</td>
<td>12% AV</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Poor compaction</td>
</tr>
<tr>
<td></td>
<td>23</td>
<td>6% AV</td>
</tr>
<tr>
<td></td>
<td>46</td>
<td>Better compaction</td>
</tr>
</tbody>
</table>

Compaction effect, continuous rehab strategy (1 ln mile)

- $426,086
- $468,291
- $584,559

- 6% AV Good compaction
- 9% AV Usual practice
- 12% AV Bad compaction
Life Cycle Cost Analysis (LCCA)-Summary

- LCCA can be used to provide a long-term costing perspective of maintenance and rehabilitation (M&R) activities
- LCCA has to be used in conjunction with performance estimates of M&R treatments to optimize life cycle cost
- Different treatment schedules should be chosen for different kinds of underlying distresses: Age related and Load related
- LCCA excel tool, developed by CCPIC, is free to access and use. Provides Net Present Value (NPV) and Equivalent Uniform Annual Cost (EUAC) for the treatment sequences
- LCCA can be used to inform decisions regarding:
 - Treatment timing
 - Treatment selection
 - Treatment sequences
 - Policy analysis like compaction effects
Construction Quality Assurance Program for Pavement Preservation

By DingXin Cheng, Ph.D.
Dr. Cheng: dxcheng@csuchico.edu
Professor, California State University, Chico
Director, California Pavement Preservation Center
Associate Director, City and County Pavement Improvement Center
Presented at PWOI meeting
Monterey, CA
March 18, 2020
Purpose of Presentation

• Provide information on Quality Control and agency acceptance for preservation treatments

• This has been done as a part of a SB-1 project for Mineta Transportation Institute

• Treatments completed to date include
 • Chip Seals
 • Slurry Surfacings
 • Cape Seals

• Manuals can be found on the MTI website at https://transweb.sjsu.edu/csutc/research/publications

• Will use Cape Seals as an example
Overview

What are Cape Seals?
- Project selection
- Specifications
- Test methods
- Mix design
- Construction
- Quality Assurance
What Are Cape Seals?

- Developed originally in Capetown and they consist of two layers.
- The first layer consists of an emulsion chip seal or a hot applied chip seal.
- The emulsion binders can be conventional or polymer modified while the hot binders are generally asphalt rubber.
- The chips are generally ½ to ⅜ inch rock, of uniform size and good quality.
What Are Cape Seals?

➢ The second layer is a slurry surfacing mixture of graded aggregate and asphalt emulsion binder with fillers and additives to make a cold emulsion mixture which cures quickly to a hard wearing surface.

➢ It can be either a microsurfacing or slurry seal

➢ Microsurfacing is preferred for cooler weather or night work
Project Selection

➢ Why use them?
 ▪ A thin, cost effective preventative maintenance treatment.
 ▪ Extends the life of the pavement

➢ Where to use them?
 ▪ Normally on asphalt pavement, but have been used on concrete pavements showing some distresses.
 ▪ They trigger ADA work
When to use them?

- Correct/improve
 - Raveling and weathering
 - Skid resistance
 - Small Cracks and voids
 - Aesthetics

- Prevent/reduce
 - Oxidation of asphalt concrete
 - Surface water infiltration
 - Pavement degradation due to the elements
Project Selection

- Don’t use on severely distressed pavement
 - Potholes
 - Severe alligator problems
 - Structurally deficient pavements
 - Severe rutting
 - Significant profile or cross-slope corrections

- These problems require repair work prior to cape seal surfacing.
What kind of distresses can Cape seals fix?
- A Cape seal can handle more severe distresses than a single chip seal or a single slurry surfacing.
Cape Seal Surfacing Materials

First Lift

➢ Chip Seal Layer
 ▪ Emulsion with damp aggregate
 or
 ▪ Hot applied rubber binder (AR) and hot pre-coated aggregate

Second Lift

➢ Slurry Surfacing Layer
 ▪ Slurry Seal (Top Layer)
 ▪ Emulsion
 ▪ Aggregate
 ▪ Additives
 or
 ▪ Microsurfacing
 ▪ Emulsion with additives for faster cure
 ▪ Higher quality aggregate
Proper project selection

Trained personnel with experience (both agency and contractor)

Equipment
- Good condition
- Calibrated

Materials and mix design
- Meets specifications
- Testing with accredited laboratory and certified testers

Good workmanship
Design-Specifications

➢ Caltrans, Greenbook, used by local agencies
 ▪ Differences in materials specifications
 ▪ Greenbook speaks of warranties
➢ If the Agency is short on inspectors, a warranty may be a good item to consider in the specifications.
Construction Topics to Cover
Pre-Construction Meeting

➢ Contractor's QC plan and process
➢ Project mix designs and materials control
➢ Equipment calibration procedure
➢ Test strip for each product and location
➢ Quality control data
➢ Inspection and testing by the agency
➢ Documentation by both sides
➢ Protection of existing facilities
➢ Traffic control plan
Contractor is responsible for quality control (QC) sampling, testing, and documentation and needs to submit a QCP.

QCP shall include sampling, testing, inspection, monitoring, documentation and submittals, and corrective action procedures during transport, stockpiling, placement, and sweeping/cleanup operations.

QCP shall detail the Contractor’s QC program that meets the requirements of the specifications.
Chip seal

- General
 - Contractor to provide proof of calibration of the distributor truck and the aggregate spreader.
 - Calibration to be repeated once per week or after five full days of chip seal operations have been completed. (This may vary per agency)

- Distributor truck
 - Application rates-transverse and longitudinal
 - Overlap- triple
 - Edge nozzle-at right angle

- Aggregate spreader
 - Application rates-transverse and longitudinal
Slurry surfacings

- Perform calibration and submit data for all slurry seal trucks in accordance with Caltrans Section 37-3.01C(3)(f)
- Calibrate the mix paver to be used for the placement of slurry seal in the presence of the Engineer
- Ensures compliance with the approved mix design/job mix formula
- Each unit shall be calibrated prior to the beginning of the project for each aggregate or mixture type.
Quality Control-Contractor

Per approved sampling and testing plan

➢ Sampling and testing of the emulsion
➢ Sampling and testing of the residual binder content
➢ Sampling and testing of the aggregate
➢ Determination of the daily application rates for the mix and the quantities of emulsion, aggregate, mineral filler, water and additives
➢ Daily inspection reports
Agency Construction Inspection

Things to do:

- Verify application rates
- Take field samples from the spreader unit for water content, residual asphalt and wet track abrasion test (WTAT)
- Note the following
 - Start & stop times of operations
 - Traffic control & trucking operations
 - Curing, rolling and sweeping
- Prepare daily reports
Agency - Construction Inspection

- Workmanship Issues
 - Spread materials uniformly
 - Longitudinal joints – ensure no material buildup
 - Transverse joints – ensure clean joints, start and stop on roofing felt
 - Mixture shall be uniform in color and homogenous after spreading

- Sweeping to ensure removal of loose aggregate (after emulsion is cured)
 - Chip seals
 - Slurry surfacing
Construction - Weather Restrictions for Emulsion Chip Seals and Slurry Surfacing

- Place when both pavement and air temperatures ≥ 50°F and rising.
- Do not place if air temperature is over 105°F
- No placement if rain is imminent
Construction–Applying Microsurfacing

- Allow microsurfacing to cure. Minimum of 1 hr.
- Roll microsurfacing
- Sweep the microsurfacing after rolling
- Open to traffic after initial sweeping.
- Sweep for 4 days after opening
- Sweep again after 2 weeks
- Quantify the sweepings after each day
Agency Inspection and Field Testing

➢ Essential items for inspector to document and detail
 ▪ Workmanship
 ▪ Protection of existing facilities
 ▪ Weather—temperatures, wind conditions
 ▪ Any problems
 ▪ Sampling per required frequencies for each material
 ▪ Issues to watch for with each material
 ▪ Spread rates and temperatures of materials
Post Application Inspection

- Minimum aggregate loss
- Correct any workmanship issues
- Cleanup
- Striping
- Opening to traffic
Did Everything Work?

➢ What do you do if the job does not meet expectations?
 ▪ Warranty is a good item to include in the contract specifications.
 • You can have the Contractor come back and repair it.
 • Usual period is for one year, can be longer.
 • Greenbook, Section 3-13.3
 ▪ Specification

➢ Some agencies hold a bond for the warranty period.
 ▪ Percentage of $ amount of contract.
What Do We Want to Avoid?

- Surface de-bonding
- Workmanship issues
 - Excessive drag marks
 - Poor longitudinal or transverse joints
- Tire marks from early traffic
- Excessive shedding
- Unacceptable hand work
What Do We Want?

➢ By following the mix designs and specifications
 ▪ Little to no rock loss or raveling after initial period
 ▪ Good workmanship
 ▪ Project looks like new road

➢ Project should last its expected life
Approaches for Delivering More Sustainable and Multi-Functional Pavement

John Harvey, UCPRC, CCPIC, UC Davis
The future of local government pavements will be more sustainable and multi-functional

- Public expectations are for more sustainable and multi-functional pavements
 - State and local legislation
 - Public comments

- More sustainable:
 - Less greenhouse gas
 - Less air pollution
 - Less stormwater pollution
 - Less virgin material use
 - More use of new “sustainable” materials

- Multi-functional:
 - Bicycles
 - Cool pavement
 - Stormwater
 - Quiet

- How do we evaluate new approaches to see if they are more sustainable?
 - Economic sustainability use Life cycle cost analysis (LCCA)
 - Environmental sustainability use Life cycle assessment (LCA)
 - Quality of life measures

- To avoid unintended negative consequences we must consider:
 - Full system
 - Full life cycle
Environmental Impacts over the Pavement Life Cycle

• Where to focus
 • Lower traffic volume routes (<2500 veh/day): most impacts are materials, transportation, construction
 • Higher traffic routes (>2500 vehicles/day): bigger impacts from rolling resistance (roughness mostly)
Impacts must consider **full life cycle and full system**

Which treatment has more environmental impacts?

- **Treatment A:**
 - Impact = 1000 tons greenhouse gas per year across the preservation program from materials production, transportation, construction
 - Lasts 8 years

- **Treatment B:**
 - 20% less initial impact than 8
 - Lasts 5 years

- Impact comparison over 20 year analysis period:
 - Treatment A: 20,000 tons
 - Treatment B: $20,000 \times (1-0.2) \times \frac{8}{5} = 25,600$ tons

- Conclusion: Treatment A produces less impact over the life cycle
Impacts must consider **full life cycle** and **full system**

Which treatment has more environmental impacts?

- Where do the environmental impact numbers come from?
 - Materials production and construction first-order numbers from Caltrans PMS are currently available
 - Contact CCPIC@ucdavis.edu
 - ITS Davis SB1/UCPRC funded LCA tool for local government is being developed and should be available by end of summer
 - Environmental Product Declarations (EPD) for materials production

- Where do the treatment lives come from?
 - Best if come from agency review of performance
 - Can also use performance curves in your pavement management system
 - Use the same information used for life cycle cost analysis
Environmental Product Declaration (EPD)

• Results of an LCA for a product, cradle to gate of plant
• Published by materials producer following industry rules

Environmental Facts

Functional unit: 1 metric ton of asphalt concrete

<table>
<thead>
<tr>
<th>Category</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary Energy Demand [MJ]</td>
<td>4.0x10³</td>
</tr>
<tr>
<td>Non-renewable [MJ]</td>
<td>3.9x10³</td>
</tr>
<tr>
<td>Renewable [MJ]</td>
<td>3.5x10²</td>
</tr>
<tr>
<td>Global Warming Potential [kg CO₂-eq]</td>
<td>79</td>
</tr>
<tr>
<td>Acidification Potential [kg SO₂-eq]</td>
<td>0.23</td>
</tr>
<tr>
<td>Eutrophication Potential [kg N-eq]</td>
<td>0.012</td>
</tr>
<tr>
<td>Ozone Depletion Potential [kg CFC-11-eq]</td>
<td>7.3x10⁻⁹</td>
</tr>
<tr>
<td>Smog Potential [kg O₃-eq]</td>
<td>4.4</td>
</tr>
</tbody>
</table>

Boundaries: Cradle-to-Gate
Company: XYZ Asphalt
RAP: 10%

Adapted from Pavement Interactive, Steve Muench

Example LCA results
Why Would a Local Government Ask for EPDs? Can Industry Deliver Them?

- EPDs provide a means for agencies to begin to quantify their emissions and impacts
- Asphalt and concrete producers have set up systems to produce verifiable EPDs
 - Including asphalt rubber and other types of asphalt, different types of concrete
- If new products are being considered this would be a good thing to ask for
 - Starts to help sort out unsubstantiated and potentially incomplete environmental claims
 - Cool pavement coatings, plastic in asphalt, extremely high RAP mixes with high rejuvenator content, etc
Are we ready to begin using EPDs for selecting materials suppliers?

Recommendations from FHWA/Industry EPD Workshop, Michigan, 2016

- Start requiring, develop rules/reporting, standardization of EPDs (1-2 years)
 - Learning period for industries and agency
- Require use of standardized EPDs (3 to 5 years)
 - Pressure industries to harmonize their reporting
 - Make sure numbers are verifiable and comparable: level playing field for competition
- Once have good numbers coming from industry, consider for procurement
 - Caltrans and California High Speed Rail are moving down this path
 - Some local governments are already considering procurement

Actionable now: Timely use of preservation
Example for urban street

• **Timely** use of preservation treatments can postpone AC mill and fills
 • Timely = when beginning to age, before cracking
 • Usually about 10 to 15 years

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Approximate Metric Tons GHG/lane mile</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slurry Seal</td>
<td>4</td>
</tr>
<tr>
<td>2.0 inch HMA mill and fill</td>
<td>45</td>
</tr>
<tr>
<td>6.0 inch HMA remove and replace</td>
<td>161</td>
</tr>
</tbody>
</table>
LCCA and LCA results: Urban alternatives

- 50 year analysis, 2% discount rate

- Remove and replace:
 - 14% more cost
 - 60% more GHG

- Preservation:
 - 12% less cost
 - 27% less GHG

Mill and Fill Scenario

<table>
<thead>
<tr>
<th>Scenario</th>
<th>$/sy</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>HMA 2 inch mill and fill</td>
<td>38</td>
<td>0</td>
</tr>
<tr>
<td>HMA 2 inch mill and fill</td>
<td>38</td>
<td>20</td>
</tr>
<tr>
<td>HMA 2 inch mill and fill</td>
<td>38</td>
<td>40</td>
</tr>
</tbody>
</table>

Remove and Replace Scenario

<table>
<thead>
<tr>
<th>Scenario</th>
<th>$/sy</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>HMA 2 inch mill and fill</td>
<td>52</td>
<td>0</td>
</tr>
<tr>
<td>Remove, replace 6 inches HMA</td>
<td>52</td>
<td>25</td>
</tr>
</tbody>
</table>

Preservation Scenario

<table>
<thead>
<tr>
<th>Scenario</th>
<th>$/sy</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>HMA 2 inch mill and fill</td>
<td>38</td>
<td>0</td>
</tr>
<tr>
<td>Slurry seal</td>
<td>7</td>
<td>12</td>
</tr>
<tr>
<td>Slurry seal</td>
<td>7</td>
<td>19</td>
</tr>
<tr>
<td>Slurry seal</td>
<td>7</td>
<td>26</td>
</tr>
<tr>
<td>HMA 2 inch mill and fill</td>
<td>38</td>
<td>33</td>
</tr>
<tr>
<td>Slurry seal</td>
<td>7</td>
<td>45</td>
</tr>
</tbody>
</table>

GHG adapted from A. Saboori doctoral thesis, 2020
Actionable now: Asphalt Compaction Quality Control

Effect of asphalt construction compaction on axle loads to cracking

General rule:
1% increase in constructed air-voids = 10% reduction in fatigue life under heavy loads

Similar effects on residential routes; more air voids = faster aging

Simulation based on FHWA Westrack project field results
Local Government LCCA and LCA example: Asphalt Compaction 8% vs 12% air-voids

• Assumptions:
 • 4 miles of two-lane rural county road
 • Pulverize cracked HMA, compact, 100 mm HMA overlay
 • $26/sy
 • 12% air-voids = 12 year life
 • 8% air-voids = 18 year life
• Net present cost* over 50 year period:
 • 12% air-voids = $4.36 million
 • 8% air-voids = $3.09 million = 29% less cost
• Greenhouse gas emissions are 34% less

*2% discount rate
How to Get Good Asphalt Compaction

• Include QC/QA construction air-void content specification in each contract
• Measure air voids as % of Theoretical Maximum Density
 • Not laboratory test maximum density
• Have contractor prove they can achieve spec
• Measure every day
• Look at the data
• Communicate with contractor
• If not following these steps, likely getting 10 to 13% air voids

On CCPIC web site!
Actionable now: use of thinner RHMA overlays

Greenhouse Gases HMA vs RHMA

- Same design for 10 year overlay on highway
- HMA strategy emits 26% more greenhouse gases because of increased thickness

<table>
<thead>
<tr>
<th>Strategy for Overlays</th>
<th>Materials (MTons GHG)</th>
<th>Construction and Transport (MTons GHG)</th>
<th>Total (MTons GHG)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 inch mill + 3 inch HMA with 15% RAP</td>
<td>1,650</td>
<td>505</td>
<td>2,155</td>
</tr>
<tr>
<td>1.25 inch mill + 2.25 inch RHMA</td>
<td>1,310</td>
<td>396</td>
<td>1,706</td>
</tr>
<tr>
<td>HMA/RHMA</td>
<td>1.26</td>
<td>1.28</td>
<td>1.26</td>
</tr>
</tbody>
</table>

Adapted from T. Wang doctoral thesis, 2013
Challenge for the Future: Multi-functionality

• Traditional goal:
 • Smooth pavement for vehicles at lowest cost

• Pavement dominates the urban landscape

Sacramento

Fractions of land area were measured above tree canopy

<table>
<thead>
<tr>
<th>Category</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pavements</td>
<td>39%</td>
</tr>
<tr>
<td>Vegetation</td>
<td>29%</td>
</tr>
<tr>
<td>Roofs</td>
<td>19%</td>
</tr>
<tr>
<td>Other</td>
<td>14%</td>
</tr>
</tbody>
</table>
Challenge for the Future: Multi-functionality

• New goals from the public and potential solutions
 • Bicycles
 • Reconfigure to include bike lanes when restriping preservation treatments
 • Selection of treatments to improve bicycle ride quality
 • Minimize cracking and roughness through preservation
 • Cool pavement
 • Balance reflectivity to improve human thermal comfort
 • Stormwater
 • Consider permeable pavement
 • Quiet
 • Raveling and roughness increase noise
 • Manage through timely preservation
Consideration of Bicyclists When Choosing Preservation Treatments

• Caltrans sponsored study
• More than 100 riders surveyed state, county and city pavements
 • HMA
 • Slurry, microsurfacing
 • Chip seals
• County and city roads
• Conclusions:
 • Minimize cracking and roughness with preservation
 • Do not select high texture seal coats
Cool Pavement Considerations

• California Air Resources Board/Lawrence Berkeley National Laboratory, UCPRC, USC, thinkstep study
 • Reflective coatings for cool pavement can substantially increase greenhouse gas emissions over life cycle compared with slurry seals
 • Case study examples for Los Angeles and Fresno
 • Reflective coatings can require up to six times more energy than a slurry over 50 year analysis period
 • https://newscenter.lbl.gov/2017/05/18/not-all-cool-pavements-are-created-equal/

• UCPRC study on human thermal comfort
 • Increased reflectivity reduces pavement temperatures
 • Also increases reflected energy onto people and objects
Li et al. (2014) Study of Cool and Reflective Pavement

Conclusions:
- Focus on human thermal comfort, not reduced electricity use
- Use cooler pavements with low GHG
- For thermal comfort must balance pavement heat and reflected energy

M is the metabolic rate (W/m²). W is the rate of mechanical work (W/m²). S (W/m²) is the total storage heat flow in the body.
Fully Permeable Pavement Design Methods

• Pervious Concrete and Porous Asphalt for Heavy Truck Traffic
 • Preliminary permeable pavement designs for typical California traffic and environmental conditions
 • Includes use of permeable concrete subbase
 • http://www.ucprc.ucdavis.edu/PDF/UCPRC-RR-2010-01.pdf

• Permeable Interlocking Concrete Pavement for Heavy Truck Traffic
 • Design method and validation results
 • Being incorporated into ICPI and ASCE designs
Small stone open-graded mixes

- Can reduce tire/pavement noise
- More durable than Caltrans OG
- Can slow stormwater runoff
Conclusions

• Better pavement practices can help reduce climate change, and often also reduce cost
• LCA and LCCA are tools to be used to quantify and prioritize
• Evaluate current practices and new alternatives considering full system and life cycle
• There are strategies that you can be implementing now!
 • Timely preservation
 • Better asphalt compaction
 • Rubberized overlays
 • Start asking for EPDs
• Multi-functionality
 • Pavement for bicycles
 • Cool pavements: select low GHG treatments, balance reflectivity for comfort
 • Consider permeable pavement, small stone open-graded mixes
Questions?