Pavement Life Cycle Assessment Workshop University of California, Davis Davis, California May 5-7, 2010

### Effect of Pavement Conditions on Rolling Resistance and Fuel Consumption

Karim Chatti, Ph.D.

Department of Civil & Environmental Engineering Michigan State University East Lansing, MI 48824







What do we mean by driving resistance and rolling resistance?

- air resistance
- rolling resistance
- inertial resistance
- gradient resistance
- side force resistance
- transmission losses
- losses from the use of auxiliaries
- engine friction

### Factors affecting rolling resistance

- Most important factors in rolling resistance:
  - Vehicle weightTire inflation
- Less important:
  - Vehicle speed
- Least important:
  - Tire tread design, composition and width
  - Tire temperature
  - Road structure and conditions

### ENGINEERING Influence of IRI and MPD on RR (Sandberg, 1997)

- Results of coast-down measurements on 34 test sections
- Increases in car RR based on ECRPD results

- at speed of 54 km/h:

- IRI from 1 to 10 m/km: increase in RR by 19 %
- MPD from 0.3 to 3 mm: increase in RR by 46 %
- at speed of 90 km/h:
  - IRI from 1 to 10 m/km: increase in RR by 48 %
  - MPD from 0.3 to 3 mm: increase in RR by 72 %

## Effect of IRI and MPD on fuel consumption (TRB special report 286)

2 m/km reduction in roughness (IRI)

10 % reduction in average rolling resistance

1 to 2% reduction in fuel consumption

# Gaps in knowledge

- The understanding of the relationship between pavement surface characteristics and vehicle fuel consumption is still in development.
- Current models require improvement.

NCHRP 1-45 : Effect of pavement conditions on fuel consumption

• Recommend **models** for estimating the **effects** of pavement **surface condition** on **VOC**. These models should be able to:

a) Take into account pavement, traffic and environmental conditions encountered in the US

b) Address the full range of vehicle types

### ENGINEERING United States VOC Models Development



# World Bank VOC Models Development



Source: HDM IV manual

### HDM 4 Model

$$IFC = f(Ptr, Paccs + Peng)$$



$$P_{tr} = \frac{\nu \left(F_{a} + F_{g} + F_{c} + F_{r} + F_{i}\right)}{1000}$$

Tractive power

11

$$Fa = 0.5 * \rho * CDmult * CD * AF * \upsilon^2$$

Fg = M \* GR \* g

$$Fc = \max\left(0, \frac{\left(\frac{M^*v^2}{R} - M^*g^*e\right)^2}{Nw^*Cs} * 10^{-3}\right)$$

Aerodynamic forces

Gradient forces

Curvature forces

 $Fr = CR2 * FCLIM * (b11 * Nw + CR1 * (b12 * M + b13 * v^{2}))$ 

CR2 = Kcr2[a0 + a1\*Tdsp + a2\*IRI + a3\*DEF]

Rolling resistance Surface factor

Inertial forces 11

$$Fi = M * \left( a0 + a1 * \arctan\left(\frac{a2}{\nu^3}\right) \right) * a$$

Field tests matrix

| Section<br>ID | Pavement Type |     | IRI range<br>(m/Km) | Length<br>(Km) | Speed<br>limit                          | Test Speed<br>(Km/h) |     | Replicates |
|---------------|---------------|-----|---------------------|----------------|-----------------------------------------|----------------------|-----|------------|
|               |               | FCC |                     |                | ((((((((((((((((((((((((((((((((((((((( |                      |     |            |
| AB            | X             |     | 1.3 - 8.5           | 1.44           | 72                                      | 56                   | 72  | 2          |
| BC            | Х             |     | 1.7 - 7             | 1.6            | 72                                      | 56                   | 72  | 2          |
| DE            | Х             |     | 3.5 - 6             | 0.48           | 72                                      | 56                   | 72  | 2          |
| EF            | Х             |     | 3.3 - 6             | 0.64           | 72                                      | 56                   | 72  | 2          |
| GH            |               | Х   | 1.1 - 2.5           | 4.8            | 112                                     | 88                   | 104 | 2          |
| JI            |               | Х   | 1.5 - 2.6           | 6.4            | 80                                      | 56                   | 72  | 2          |
| IJ1           |               | Х   | 1.5 - 2.6           | 0.64           | 80                                      | 72                   | 88  | 2          |
| IJ2           | X             |     |                     | 1.6            | 80                                      | 56                   | 72  | 2          |
| IJ3           |               | Х   | 0.8 - 4.6           | 0.48           | 80                                      | 56                   | 72  | 2          |
| IJ4           |               | X   |                     | 1.28           | 72                                      | 56                   | 72  | 2          |

### Data acquisition system

 The data acquisition system could access and log data from the vehicle's Engine Control Unit (ECU) via On Board Diagnostic (OBD) connector





# ENGINERING Profile and Texture Measurements: MDOT test vehicles





#### **Rapid Travel Profilometer**

This vehicle measures the ride quality or smoothness of pavements. Operating at highway speeds, it uses a laser to measure the profile of the roadway and an accelerometer to determine the movement of the truck.

#### **Road Surface Analyzer**

This equipment computes a Mean Profile Depth (MPD) based on the ASTM Standard E1845

### Slope surveys: High Precision GPS

- The sampling rate is every 1 second at highway speed (every 100ft).
- The average error is 0.5 inch per 0.3 miles,









## Loading conditions

#### Light truck



6,210 lb

#### Heavy truck



47,000 lb

# Calibration of the HDM 4 fuel consumption model

#### Engine and accessories power



#### **Rolling resistance Surface factor**

$$CR2 = Kcr2[a0 + a1*Tdsp + a2*IRI + a3*DEF]$$

#### <sup>19</sup> ENGINERING Effect of engine speed prediction errors on the calibration



Overestimation of the engine speed Overestimation of the engine and accessories power **Underestimation of the** traction power **Underestimation of the effect** 

of pavement conditions

### ENGINEERING Calibration of the HDM 4 engine speed model

Van



### ENGINEERING Observed fuel consumption versus estimated after calibration



21



# Heavy Truck: Analysis of covariance at 55 mph

#### **Tests of Between-Subjects Effects**

Dependent Variable:FC\_mLKm

| Source          | Type III Sum<br>of Squares | df  | Mean Square | F         | Sig. |
|-----------------|----------------------------|-----|-------------|-----------|------|
| Corrected Model | 4300.769 <sup>a</sup>      | 14  | 307.198     | 769.817   | .000 |
| Intercept       | 19697.944                  | 1   | 19697.944   | 49361.721 | .000 |
| IRI             | 23.557                     | 1   | 23.557      | 59.032    | .000 |
| Texture         | .147                       | 1   | .147        | .368      | .545 |
| Grade           | 3796.846                   | 12  | 316.404     | 792.887   | .000 |
| Error           | 48.684                     | 122 | .399        |           |      |
| Total           | 351401.815                 | 137 |             |           |      |
| Corrected Total | 4349.454                   | 136 |             |           |      |

a. R Squared = .989 (Adjusted R Squared = .988)

# Heavy truck: Analysis of covariance at 35 mph

#### **Tests of Between-Subjects Effects**

Dependent Variable:FC\_mLKm

| Source          | Type III Sum<br>of Squares | df  | Mean Square | F         | Sig. |
|-----------------|----------------------------|-----|-------------|-----------|------|
| Corrected Model | 138113.100 <sup>a</sup>    | 13  | 10624.085   | 2077.841  | .000 |
| Intercept       | 335375.546                 | 1   | 335375.546  | 65592.193 | .000 |
| IRI             | 500.674                    | 1   | 500.674     | 97.921    | .000 |
| Texture         | 23.920                     | 1   | 23.920      | 4.678     | .032 |
| Grade           | 123056.405                 | 11  | 11186.946   | 2187.924  | .000 |
| Error           | 628.904                    | 123 | 5.113       |           |      |
| Total           | 5525978.735                | 137 |             |           |      |
| Corrected Total | 138742.004                 | 136 |             |           |      |

a. R Squared = .995 (Adjusted R Squared = .995)

### ENGINEERING Effect of roughness: HDM 4 versus regression data



**Before calibration** 

After calibration

# Effect of Texture on Fuel Consumption -Regression



# Effect of pavement type on fuel consumption

- Conduct univariate analysis having IRI as a covariate and pavement type as fixed factor
- Repeat the analysis for 35, 45 and 55 mph

### ENGINEERING Effect of pavement type on fuel consumption

|                   | Sum        | mer              | Winter |              |  |
|-------------------|------------|------------------|--------|--------------|--|
|                   | Sig.       | Not Sig.         | Sig.   | Not Sig.     |  |
| Passenger Car     |            | $\checkmark$     |        | $\checkmark$ |  |
| VAN               |            | $\checkmark$     |        | $\checkmark$ |  |
| SUV               |            | $\checkmark$     |        | $\checkmark$ |  |
| Light Truck       | $\sqrt{*}$ | $\sqrt{\dagger}$ |        | $\checkmark$ |  |
| Articulated Truck | $\sqrt{*}$ | $\sqrt{\dagger}$ |        | $\checkmark$ |  |

\* Trucks driven over AC at 35 mph consumes more than trucks driven over PCC

† not significant at 45 and 55 mph

### Articulated truck



### Part I Summary and conclusions

- Field tests as part of NCHRP 1-45 confirmed the effect of roughness on fuel consumption and allowed for calibration and validation of the HDM 4 FC model.
- Effect of texture depth on fuel consumption could only be seen for heavy truck at low speed (35 mph)
- Effect of pavement type could only be seen in summer conditions, only for trucks and only at low speed (35 mph)

# Part II: Effect of Roughness on Repair and Maintenance Costs

### HDM 4 Repair and Maintenance Model

- HDM4 Repair and Maintenance Cost model is empirical.
- HDM-4 model was calibrated using data from developing countries (e.g., Brazil, India).
  - Labor hours are much higher than in the US
  - The inflation in the parts and vehicle prices between the US and developing countries.

### ENGINEERING HDM 4 repair and maintenance costs model

#### Parts consumption

 $PARTS = \left(K0_{pc} \left[CKM^{kp} (a_0 + a_1 RI)\right] + K1_{pc}\right) \left(1 + CPCON \times dFUEL\right)$ 

 $RI = \max(IRI, \min(IRI_0, a_4 + a_5 * IRI^{a6}))$ 

$$a_{4} = IRI0 - a_{7}$$

$$a_{5} = \frac{a_{7}}{IRI0}$$

$$a_{5} = \frac{IRI0}{a_{7}}$$

$$a_{7} = IRI0 - 3$$

$$IRI0 = 3$$

Smoothing equation

#### • Labor hours

 $LH = KO_{lh} \left( a_2 \times PARTS^{a_3} \right) + K1_{lh}$ 

# Updating Zaniewski's tables



### Data Analysis (Empirical approach)

- Repair and maintenance costs from Texas DOT and Michigan DOT
- Extract only repair costs related to damage from vibrations:
  - Underbody inspection
  - Axle repair and replacement
  - Shock absorber replacement

# ENGINEERIN R&M Costs from MDOT



#### (a) Passenger Car



(c) Medium Trucks





#### (b) Light Trucks



#### (d) Heavy Trucks



(f) Buses

(e) Articulated Trucks

# Mechanistic Approach

• A mechanistic-empirical approach was proposed to conduct fatigue damage analysis using vehicle-pavement interaction modeling.

#### Artificial generation of road surface profile



# ENGINEERING Failure threshold

- User perspective : Replace parts when certain signs of wear become evident.
- Manufacturer lifetime warranty:
  - Truck suspensions : 250,000 miles
  - Car suspensions : 100,000 miles



## Failure threshold (Cont'd)

- For cars: 87.3 %
- For trucks: 62.2 %
- Vehicle manufacturers design their vehicles for:
  - Cars: 90<sup>th</sup> to 95<sup>th</sup> percentile of roughness
  - Trucks: 80<sup>th</sup> to 95<sup>th</sup> percentile of roughness

#### For cars



Car manufacturers design their vehicle for the 90<sup>th</sup> to 95<sup>th</sup> percentile of roughness

#### For trucks



Truck manufacturers design their vehicle for the 80<sup>th</sup> to 95<sup>th</sup> percentile of roughness

# Accumulated damage using actual profiles from in-service pavements

#### Cars

#### Trucks



### ENGINEERING Empirical versus mechanistic predictions: Trucks



### ENGIEERING Empirical versus mechanistic predictions: Cars



### ENGINEERING Example: VOC for Trucks caused by I69 condition



47

### ENGINEERING Example: VOC for Cars caused by I69 condition



# Any Questions ?