Integrating Pavement Life-Cycle Cost Analysis and Life-Cycle Assessment for Multi-criteria Decision Making

Pavement Life-Cycle Assessment Workshop. UC Davis. May 6, 2010

Nakul Sathaye
Postdoctoral Researcher
Institute of Transportation Studies
University of California, Berkeley
Outline

• The climate policy perspective

• LCCA and LCA

• Integrating LCCA and LCA

• Policy levers
The importance of transportation in climate policy making

• International: ~25% of GHG emissions
• California: ~40% of GHG emissions

• Transport policy typically focuses on:
 Vehicle efficiency, Alternative fuels, Travel Reduction

• Most work has focused on fuel consumption, for which short-term fuel demand elasticity has been low, and technologies have been relatively slow to make an impact

• The infrastructure supply-chain has also been shown to contribute significantly to emissions
Outline

• The climate policy perspective
 • Some completed transportation LCA work
 • Climate policy prioritization

• LCCA and LCA

• Integrating LCCA and LCA

• Policy levers
LCA for US passenger transportation

Source: Chester & Horvath (2009)
LCA for US freight transportation

Source: Facanha & Horvath (2006)
Within-Vehicle Class Consolidation on SR-13

Years between overlays

<table>
<thead>
<tr>
<th>Years</th>
<th>Status Quo</th>
<th>After Shift</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>11</td>
<td>19</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

GHG (10^3 kg CO$_2$ eq./yr)

<table>
<thead>
<tr>
<th>Status Quo</th>
<th>After Shift</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overlay</td>
<td></td>
</tr>
<tr>
<td>Tailpipe</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>140</td>
</tr>
<tr>
<td>51</td>
<td>96</td>
</tr>
</tbody>
</table>

SO_2 (kg/yr)

<table>
<thead>
<tr>
<th>Status Quo</th>
<th>After Shift</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overlay</td>
<td>Tailpipe</td>
</tr>
<tr>
<td>55</td>
<td>93</td>
</tr>
</tbody>
</table>

$PM_{2.5}$ (kg/yr)

<table>
<thead>
<tr>
<th>Status Quo</th>
<th>After Shift</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overlay</td>
<td>Tailpipe</td>
</tr>
<tr>
<td>8</td>
<td>29</td>
</tr>
<tr>
<td>13</td>
<td>21</td>
</tr>
</tbody>
</table>

Source: Sathaye, Horvath & Madanat (2010)
Outline

• The climate policy perspective
 • Some completed transportation LCA work
 • Climate policy prioritization

• LCCA and LCA

• Integrating LCCA and LCA

• Policy levers
Climate policy prioritization in California

• Total achievable GHG reductions

• Cost-effectiveness:
 – $ costs per GHG reductions
Outline

• The climate policy perspective

• LCCA and LCA

• Integrating LCCA and LCA

• Policy levers
Life-Cycle Cost Analysis

• Agency costs
 – reconstruction
 – maintenance (e.g. overlays)

• Social costs
 – traffic delays
 – vehicle wear
 – accident costs
 – environmental costs
 • e.g. price per ton of carbon emissions
Optimization of costs

• objectives:
 agency costs
 user costs
 user benefit

• constraints:
 agency budget
 minimum pavement condition
Life-Cycle Assessment

- Maintenance Supply Chain
- Fuel consumption resulting from roughness
- Delay

Emissions → Concentration → Exposure → Intake → Dose → Health Effects

Quantifying environmental impacts

Table 2. Air Pollution Damages Costs by Impacted Region

<table>
<thead>
<tr>
<th>Pollutant name</th>
<th>Average cost (2003 US$/t)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Urban</td>
</tr>
<tr>
<td>Particulate matter</td>
<td>6,144</td>
</tr>
<tr>
<td>Nitrogen oxides</td>
<td>156</td>
</tr>
<tr>
<td>Sulfur dioxides</td>
<td>170</td>
</tr>
<tr>
<td>Carbon monoxide</td>
<td>2</td>
</tr>
<tr>
<td>Lead</td>
<td>3,955</td>
</tr>
<tr>
<td>VOC</td>
<td>1,960</td>
</tr>
<tr>
<td>Carbon dioxide</td>
<td>—</td>
</tr>
<tr>
<td>Nitrous oxide</td>
<td>—</td>
</tr>
<tr>
<td>Methane</td>
<td>—</td>
</tr>
</tbody>
</table>

Source: Kendall, Keoleian & Helfand (2008)
Indexes

- Can provide a communicable framework (e.g. LEED)

- Life-cycle emissions vary by time and location
 - Deterioration is an uncertain process
 - Variability in fuel consumption across fleet
 - Traffic networks differ

- Equity Concerns

- Point systems oversimplify impacts
 - Higher ratings can result in higher impacts
Outline

• The climate policy perspective

• LCCA and LCA

• Integrating LCCA and LCA
 – Multi-objective optimization
 – Question marks

• Policy levers
Multi-objective Optimization of costs and GHGs

- objectives:
 - agency costs
 - user costs
 - user benefit

- constraints:
 - agency budget
 - GHG emissions
Using a Pareto optimal frontier

Example policies
Outline

• The climate policy perspective

• LCCA and LCA

• Integrating LCCA and LCA
 – Multi-objective optimization
 – Question marks

• Policy levers
Approach to pavement management systems

• Single-facility level vs. Network-level
 • Heterogeneity of LCA results suggest importance of budget allocation issues
Time horizon

• Discount rates
 – Investment, Opportunity Costs
 – Social discount rate (IPCC)

• Period
 – Pavement functional design life
 – Environmental regulatory objectives
Outline

• The climate policy perspective

• LCCA and LCA

• Integrating LCCA and LCA

• Policy levels
What level of government for multi-criteria decision making?

• Pavement management is conducted at multiple levels

• Implementation of pollution policy was developed at the city, regional and state levels in the US

• Environmental policy is mandated at the state or federal level in many countries

• GHG policy is entering the international level

• Highlights the need for communication across government levels
Important Concepts

• Cost effectiveness and total GHG reductions
• No-regrets options

• Potential problems with blanket indexes
• Pareto optimal frontier for multi-criteria decision making

• Communication is necessary across multiple levels of government