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The importance of transportation in
climate policy making

International: ~¥25% of GHG emissions
California: ~40% of GHG emissions

Transport policy typically focuses on:
Vehicle efficiency, Alternative fuels, Travel Reduction

Most work has focused on fuel consumption, for which short-
term fuel demand elasticity has been low, and technologies
have been relatively slow to make an impact

The infrastructure supply-chain has also been shown to
contribute significantly to emissions
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LCA for US passenger transportation
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LCA for US freight transportation
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Within-Vehicle Class Consolidation on SR-13
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Climate policy prioritization in California

 Total achievable GHG reductions

e Cost-effectiveness:

— S costs per GHG reductions
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Life-Cycle Cost Analysis

* Agency costs
— reconstruction
— maintenance (e.g. overlays)

e Social costs
— traffic delays
— vehicle wear
— accident costs

— environmental costs
e e.g. price per ton of carbon emissions

11



Optimization of costs

* objectives:
agency costs
user costs
user benefit

* constraints:
agency budget
minimum pavement condition
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Life-Cycle Assessment

* Maintenance Supply Chain
* Fuel consumption resulting from roughness
* Delay

=

Emissions Concentration Exposure Intake Dose

Health Effects
Source: Marshall (2005)
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Quantifying environmental impacts

Table 2. Air Pollution Damages Costs by Impacted Region

Average cost

(2003 US%A)

Pollutant name Urban Urban fringe Fural Global
Particulate matter f, 144 2,750 =00 —
Mitrogen oxides | 56 B3 19 -
Sulfur dioxides | 7 b 21 —
Carkbon monoxide 2 | X —
Lead 3055 2,059 430 —
WO 1,960 1,960 | S60 —
Carbon dioxide — — — 21
Mitrous oxide — — — 7112
Methane — — — 384

Source: Kendall, Keoleian & Helfand (2008)
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Indexes

Can provide a communicable framework (e.g. LEED)

Life-cycle emissions vary by time and location
— Deterioration is an uncertain process

— Variability in fuel consumption across fleet
— Traffic networks differ

Equity Concerns

Point systems oversimplify impacts

— Higher ratings can result in higher impacts

15



Outline

The climate policy perspective

LCCA and LCA

Integrating LCCA and LCA
— Multi-objective optimization

— Question marks

Policy levers

16



Multi-objective Optimization of costs and GHGs

* objectives:
agency costs
user costs
user benefit

e constraints:
agency budget
GHG emissions
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Using a Pareto optimal frontier

.{ Example policies \.

Total
GHGs

Total S Costs
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Approach to pavement management systems

* Single-facility level vs. Network-level

* Heterogeneity of LCA results suggest importance of
budget allocation issues
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Time horizon

* Discount rates
— Investment, Opportunity Costs
— Social discount rate (IPCC)

* Period

— Pavement functional design life
— Environmental regulatory objectives
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What level of government for multi-

criteria decision making?

Pavement management is conducted at multiple
levels

Implementation of pollution policy was
developed at the city, regional and state levels in
the US

Environmental policy is mandated at the state or
federal level in many countries

GHG policy is entering the international level

Highlights the need for communication across
government levels
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Important Concepts

Cost effectiveness and total GHG reductions
No-regrets options

Potential problems with blanket indexes

Pareto optimal frontier for multi-criteria decision
making

Communication is necessary across multiple
levels of government

24



