## **Co-product Allocation**

Nicholas Santero, Ph.D.Alissa Kendall, Ph.D.Postdoctoral ScholarAssistant ProfessorCivil and Environmental Engineering Civil and Environmental EngineeringUniversity of California, BerkeleyUniversity of California, BerkeleyUniversity of California, Davis

## **Co-Product Treatment**

- Co-Product
  Treatment
  - Co-products are produced alongside the primary product of study
  - Example: For ethanol the main co-product is dry distiller's grains and solubles (DDGS)



## **Co-Product Treatment**

 If we allocate all the burdens at the ethanol plant to ethanol it would receive no "credit" for producing the co-product (which has some use as a cattle feed)

 If we assume that the factory is intended to produce two products (ethanol and DDGS) then we still need a way to divide up the burdens among the 2 products

## Ways to deal with Co-Products

- The "best" way is to avoid co-product allocation altogether, but this is rarely possible
- Assuming we have to allocate burdens, there are many ways to do this
  - Allocation based on value (value can be \$, weight, energy content, etc.)
  - System expansion
    - Broadens system boundary to introduce new functional unit
    - Or subtracting the environmental burdens of an alternative way of producing the co-product or the coproduct's equivalent

# Value-Based Allocation: LCA of Product

Products A and B are produced at the same factory. Assuming Products A and B are produced at the same rate...



### System Expansion: LCA of Product A



## Allocation within a Refinery

#### **Petroleum Refining**



Refining often treated as "black box" system, where products are allocated based on their relative economic value, energy content, or mass (value-based allocation)

## Process Energy in Bitumen



## Allocation of Bitumen in a Refinery

- Bitumen is one of many products produced at a refinery
- Low profit compared to the primary refinery products (gasoline, diesel, naptha, kerosene, etc.)
- Most processes are dedicated to refining lighter fractions
  - Goal of refining is to remove heavy residuals

## Allocation of Bitumen in a Refinery



By mass: 4,840 MJ/Mg

By energy content: 4,920 MJ/Mg

By economic value: 4,470 MJ/Mg

Source: Wang et al. (2004) "Allocation of Energy Use in Petroleum Refineries to Petroleum Products" Int J LCA 9(1) 34-44

## Is there a better way?

- ISO 14044 suggests that allocation is best avoided when possible
  - Possible to isolate bitumen-only process
  - Establish rationale for performing each process (e.g., is vacuum distillation really performed to manufacture bitumen?)
- Only "asphalt processing" is specific to bitumen
  - Accounts for only 1% of total refinery emissions (Brown et al. 1996)
  - If only account for "asphalt processing", process energy drops to ~2,500 MJ/Mg
  - Resulting CO<sub>2</sub>, other emissions will drop as well

## **Other Allocation Issues**

- Concrete SCMs
  - Fly ash
  - Slag
  - Silica fume
  - Etc.

- Asphalt additives
  - Polymers
  - Rubber
  - Glass
  - Etc.

 Recycling of pavements