

Models for rolling resistance In Road Infrastructure Asset Management systems

What is MIRIAM?

Project started in 2009 by 11 partners from Europe, incl two from USA

Pooled, internal funding (so far)

Aims at providing a sustainable, environmentally friendly road infrastructure

by reducing rolling resistance – hence lowering CO₂ emissions and increasing energy efficiency

Road transport is the second largest contributor to Green House Gas emissions (GHG)

Passenger cars, for example, have a significant impact on climate change in Europe: approx. 12 % of total CO₂ emission

Emissions from transport in the EU have increased by 26% from 1990 to 2004

EU Commission focuses on reducing the GHG by tighter regulations for vehicles through regulations Euro 5 and 6 for cars and Euro VI for trucks

The rolling of tires is one of the major sources of energy losses in road vehicles; thus must be part of a policy aiming at reducing energy and GHG emissions

Overall objectives of the project

- To help providing a sustainable and environmentally friendly road infrastructure
- To develop an integrated methodology for improved control of road transport CO₂ emissions
- To implement the methodology in road asset management systems, to optimize the reduction of CO₂ emission related to the interaction vehicle/tire/pavement
- To optimize pavement quality and condition in relation to CO₂ emission and energy consumption
- To provide better quality of life for society in general

To develop models for:

The sources

Rolling resistance model, as related to pavement properties, with consideration of tires and vehicles

The effects

Model for energy consumption and CO₂ emissions due to rolling resistance

Integration and implementation

Transport infrastructure operation and management as related to rolling resistance

Phase 1: 2010-2011 Sub-projects (preliminary)

- 1 Measurement methods and source model(s) (Leader: VTI, Sweden)
- 2 Influence of pavement characteristics on energy efficiency (Leader: AIT, Austria)
- 3 Importance of Rolling Resistance on efficiency within an LCA framework (Leader: UC Davis, USA)
- 4 Constraints / Requirements to implementation in Asset Management and LCA systems (Leader: DRI, Denmark)
- 5 External funding and raising awareness (Leader: DRI, Denmark)

What is rolling resistance?

Direction of travel

$$C_R = P_f / F_z = tg\Theta \approx \Theta$$

"Tire Technology Expo 2006" 7, 8, 9 March 2006, Stuttgart, Germany

Four main methods in our work:

Rolling resistance: Measurement on drum (ISO 18164)

Fuel consumption: Measurement with instrumented car

Rolling resistance: Measurement with test tire on trailer

Rolling resistance: Coast-down with car or truck

Trailer constructed at TUG used for measurements at VTI in Sweden

Effect on fuel consumption of tyre inflation pressure

resistance and pavement textu Correlation between rolling

Some recent advances in Europe with respect to rolling resistance

REGULATION (EC) No ???/2009

Labelling of tyres with respect to fuel efficiency and other essential parameters

