Integration of LCA into Pavement Management Systems

Samer Madanat
With Arpad Horvath and Darren Reger
Civil and Environmental Engineering
UC Berkeley

Pavement Management Alternatives

Resurfacing

When to resurface?

- Trigger roughness examples
 - 2.7m/km: currently used by Caltrans
 - 3.5m/km: Caltrans former policy, used by WSDOT
- Are the trigger roughness values used in practice optimal for LCC minimization?
 - No; based on subjective criteria
- Should all roads be treated the same?
 - Universal trigger vs segment-specific trigger

Pavement Resurfacing Optimization

- Given roughness progression model, maintenance effectiveness, cost of resurfacing, user cost models, determine:
 - Frequency of resurfacing (or trigger roughness),
 and
 - Overlay thickness
- Objective: minimize life cycle costs (LCC) over a finite horizon
 - LCC include all agency and user costs

Saw-tooth trajectory of pavement roughness

Li & Madanat (2002)

Pavement GHG emissions (LCA)

 Sources of GHG emissions: mainly from the use phase and the maintenance (resurfacing) phase

Tradeoffs for Emissions

Overlay Intervals: Effects on LC Costs and LC Emissions

Pareto Frontier

Example: Two-Lane Rural Rd

Network-Level Resurfacing Optimization

- Managing infrastructure systems to minimize environmental and economic impacts
 - Network-level optimization for LCC

 Multi-criteria optimization for pavement maintenance

Source: http:// commons.wikimedia.org/wiki/ File:California_state_highways.svg

Pavement Resurfacing Optimization at Network-Level

 Bottom-up solution method preserves facilityspecific characteristics

Minimize *Annual Agency Costs + User Costs*

Resource Allocation Problem:

Results for network-level case study

Insights from network-level problem

 The uniform trigger roughness policy adopted by many state agencies is not optimal: different pavements have different optimal trigger roughness

 The optimal solution is robust to deterioration model parameter uncertainty

Pareto Frontier for Caltrans D4

Carbon Pricing

Comparison of cost-effectiveness

Measure	Annual CO ₂ -e emission reduction	Life cycle cost- effectiveness (\$2008/tCO ₂ -e)
LDV: Incremental efficiency	20% tailpipe reduction	-75 **
LDV: Advanced hybrid vehicle	38% tailpipe reduction on new vehicles	42 **
Commercial trucks: Class 2b efficiency	25% tailpipe reduction	-108 **
Ethanol fuel substitution	Increase mix of cellulosic ethanol to 13% by volume	31 **
Current Caltrans trigger* (170 in/mile, or 2.7 m/km)	0.82 MMT	332
Optimal roughness triggers* (Caltrans cost only)	1.38 MMT	390
Optimal roughness triggers* (all user benefits included)	1.38 MMT	-665 to -1,509

^{*} Versus Routine Maintenance **Lutsey, PhD thesis Wang et al 2014 Environ. Res. Lett. 9 034007

Maintenance Results (E_M)

Network-Level Evaluation

