Life cycle assessment of ultra-high performance concrete bridge deck overlays

International Symposium on Pavement, Roadway, and Bridge Life Cycle Assessment

Milena Rangelov, Ph.D.
Robert Spragg, Ph.D.
Zachary Haber, Ph.D.
Heather Dylla, Ph.D.
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AP</td>
<td>Acidification potential</td>
</tr>
<tr>
<td>CC</td>
<td>Conventional concrete</td>
</tr>
<tr>
<td>EOL</td>
<td>End-of-life</td>
</tr>
<tr>
<td>EP</td>
<td>Eutrophication potential</td>
</tr>
<tr>
<td>GWP</td>
<td>Global warming potential</td>
</tr>
<tr>
<td>HBS</td>
<td>Hypothetical bridge structure</td>
</tr>
<tr>
<td>LCA</td>
<td>Life cycle assessment</td>
</tr>
<tr>
<td>LMC</td>
<td>Latex modified concrete</td>
</tr>
<tr>
<td>ODP</td>
<td>Ozone depletion potential</td>
</tr>
<tr>
<td>SCM</td>
<td>Supplementary cementitious materials</td>
</tr>
<tr>
<td>SCP</td>
<td>Smog creation potential</td>
</tr>
<tr>
<td>UHPC</td>
<td>Ultra-high performance concrete</td>
</tr>
</tbody>
</table>
Problem Statement

• Conventional concrete or asphalt overlays for bridge deck repairs provide limited service life extension.

• More resilient and durable solutions for bridge deck repairs are sought after.

• Sustainability considerations (economic, environmental, social) are important.

• UHPC presents a promising innovative solution.
What is UHPC?

- Cement-based composite
- Optimized gradation of granular constituents
- Discontinuous pore structure
- High volume of discrete steel microfiber reinforcement
- Post-cracking strain capacity and tensile ductility
Ballpark Properties

• High compressive strength (18 ksi +)
• High tensile strength (0.7 ksi +)
• Tensile ductility, post-cracking strain capacity
• Very low permeability (100x < conventional concrete)
• Resistant to freeze-thaw damage
• Strong bond to existing concrete
• Strong bond to reinforcing bars
• Application-tailored rheology
Use as an Overlay
Use on Signature Structures in the U.S.

Commodore Barry Bridge (New Jersey)

Delaware Memorial Bridge (Delaware)

Newport Bridge (Rhode Island)
Study Goal

- Conduct a preliminary LCA on overlays of HBS.
- Evaluate 3 overlay options:
 1. CC – Conventional Concrete
 2. LMC – Latex Modified Concrete
 3. UHPC – Ultra High Performance Concrete
- Account for performance difference and include life-cycle perspective.
- Involve stakeholders and include primary data.
HBS and overlay details

Functional unit:
The overlay applied to the full deck area of the HBS over a service life of 50 years.

Elevation view of bridge structure

Cross-section and travel lanes

a) pre-overlay
b) CC or LMC overlay
c) UHPC overlay
Product system

CC or LMC
- Cement
- Aggregate
- Admixtures
- SCM
- Equipment
- Batch in volumetric trucks
- Transfer to placement site
- Mixing
- Return to stockpile
- Hydromilling
- Waste transfer to landfill
- Placement
- Finishing
- Grinding

UHPC
- Cement
- Aggregate
- Admixtures
- SCM
- Fibers
- Equipment
- Set up mobile mixer
- Charge and mix
- Transfer to placement site
- Return to mixer
- Hydromilling
- Waste transfer to landfill
- Placement
- Finishing
- Grinding

Legend
- System boundary
- Transport

Bridge exits
Service (year 50)

A1
Raw material production

A2
Transport to jobsite

A3 and A4
Mixing and Transport

A5
Construction

B
Use

C
EOL

Deck overlay in-service
Maintenance events neglected

2 reconstruction events

Deck overlay in-service
Maintenance events neglected

Deck overlay in-service
Maintenance events neglected

Maintenance events neglected

Maintenance events neglected
Main drivers of environmental impacts are: cement, steel fibers (UHPC), admixtures (LMC, UHPC).
Main drivers of environmental impacts are hydromilling and slurry containment.
Results: Life Cycle

- Impacts of UHPC overlay are lower after the first cycle.
- Service life extension of UHPC overlay increases environmental benefits.
• Impacts of materials are the highest, followed by construction.
• Reconstruction (CC, LMC) includes 2 repeated cycles of materials, mixing, and construction.
Conclusions

• UHPC overlays can outperform CC and LMC counterparts in terms of environmental impacts after only one life cycle.

• Benefits are more prominent when service-life extensions are considered.

• Relatively high environmental impacts of UHPC overlay can be attributed to cement, steel fibers, and hydromilling activities.

• Future research efforts include:
 • Additional sustainability metrics (LCCA, stochastic LCA)
 • Service-life modeling of chloride ingress
 • Alternative mixture designs
For More Information

FHWA Contacts
Milena Rangelov (Milena.Rangelov.ctr@dot.gov).
Robert Spragg (Robert.Spragg@dot.gov)
Zachary Haber (Zachary.Haber@dot.gov)
Heather Dylla (Heather.Dylla@dot.gov).

UHPC

FHWA Sustainable Pavements Website:
Disclaimer

The U.S. Government does not endorse products or manufacturers. Trademarks or manufacturers’ names appear in this presentation only because they are considered essential to the objective of the presentation. They are included for informational purposes only and are not intended to reflect a preference, approval, or endorsement of any one product or entity.